Huan He

My name is Huan He, a postdoctoral researcher at University of Pennsylvania, working with Professor Yong Chen. I received my PhD in Computer Science from Emory in 2022, where I was a co-supervised by Professors Joyce Ho and Yuanzhe Xi.

A main thrust of my research focuses on develop efficient and trustworthy machine learning models for complex real-world data (e.g., tensors, images, texts, graphs, RNA-Seq), under different contexts (e.g., distribution shift, missing data), from various aspects (e.g., accuracy, efficiency, robustness, fairness). Thus far, I have focused on two complementary directions: (1) Scientific Computing for Machine Learning (e.g., optimization, numerical analysis, parallel computing) (2) Machine Learning for Health (e.g., Eletronic Health Records Phenotyping, Causal Inference, Transfer Learning)

Professional Experience

2023-Present Postdoc, University of Pennsylvania, Advisor: Dr. Yong Chen.
2022-2023 Postdoc, Harvard Medical School, Advisor: Dr. Marinka Zitnik.

Education

- 2016-2022 **Ph.D in Computer Science**, *Emory University*, Advisor: Dr. Joyce C. Ho and Yuanzhe Xi.
- 2014-2016 **M.Sc in Financial Mathematics**, University of Connecticut, Advisor: Dr. James G. Bridgeman.
- 2010–2014 B.S in Financial Engineering, Shanghai Finance University.

Publications and Preprints

- 2024 ICLR **Huan He**, William hao, Yuanzhe Xi, Yong Chen, Bradley Malin, Joyce Ho. A Flexible Generative Model for Heterogeneous Tabular EHR with Missing Modality. In: International Conference on Learning Representations (ICLR) 2024.
 - 2023 Xiaokang Liu, *Huan He*, Naimin Jing, Jason Moore, Christopher Forrest, Yong Chen. PreTrained-Subtyping: Pre-trained knowledge-guided transfer learning for identifying clinical subphenotypes of multisystem inflammatory syndrome in children. *Under Review*
 - 2023 Ru Huang, Kai Chang, **Huan He**, Ruipeng Li, Yuanzhe Xi. Reducing operator complexity in Algebraic Multigrid with Machine Learning Approaches. *Minor Revision(Revised)*, *SIAM Journal on Scientific Computing*
 - 2023 Huan He, Shifan Zhao, Ziyuan Tang, Yousef Saad, Yuanzhe Xi. NLTGCR: A class of Nonlinear Acceleration Procedures based on Conjugate Residuals. Accepted by SIAM Journal on Matrix Analysis and Applications (SIMAX).
 - 2023 Owen Queen, Thomas Hartvigsen, Teddy Koker, **Huan He**, Theodoros Tsiligkaridis, Marinka Zitnik: Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency. In: Conference on Neural Information Processing Systems (NeurIPS 2023, **Spotlight**)
 - 2023 Huan He, Owen Queen, Teddy Koker, Consuelo Cuevas, Theodoros Tsiligkaridis, Marinka Zitnik. Domain Adaptation for Time Series Under Feature and Label Shifts. In: International Conference on Machine Learning (ICML) 2023.
 - 2023 Jiali Cheng, Huan He^{*}, George Dasoulas^{*}, Chirag Agarwal, Marinka Zitnik. GN-NDelete: A General Unlearning Strategy for Graph Neural Networks. (*: equal contribution). In: International Conference on Learning Representations (ICLR) 2023.

- 2023 *Huan He*, Joyce C Ho, Shifan Zhao, Yuanzhe Xi. MedDiff: Denoising Diffusion Probabilistic Models for Electronic Health Records generation . *In Review.*
- 2022 Yuliang Ji, Difeng Cai, *Huan He*, Yuanzhe Xi. AUTM Flow: Atomic Unrestricted Time Machine for Monotonic Normalizing Flows. In: *Conference on Uncertainty in Artificial Intelligence (UAI) 2022.*
- 2022 Huan He, Shifan Zhao, Yuanzhe Xi, Joyce C Ho, Yousef Saad. GDA-AM: Solve Minimax Optimizaton by Anderson Mixing. In: International Conference on Learning Representations (ICLR) 2022.
- 2021 Huan He, Yuanzhe Xi, Joyce C Ho. AGE: Enhancing the Convergence on GANs using Alternating extra-gradient with Nonlinear Gradient Extrapolation. In: NeurIPS Workshop on Deep Generative Models and Downstream Applications (Oral), 2021.
- 2020 **Huan He**, Yuanzhe Xi, Joyce C Ho. Fast and Accurate Tensor Decomposition without a High-Performance Computing Machine. In: *International Conference on BigData*. 2020.
- 2020 Huan He, Yuanzhe Xi, Joyce C Ho. Accelerated Stochastic Gradient Decent(SGD) for Sparse Tensor Decomposition. In: *IEEE International Conference on Data Mining Workshop*, 2020.
- 2019 Huan He, Jette Henderson, Joyce C Ho. SGranite: Distributed tensor decomposition for large scale health analytics. In: Proceedings of The Web Conference. 2019.
- 2018 Jette Henderson, *Huan He*, Bradley A Malin, Joshua C Denny, Abel N Kho, Joydeep Ghosh, and Joyce C Ho. Phenotyping through Semi-Supervised Tensor Factorization (PSST). In: *AMIA Annual Symposium*. 2018.

High-level Research Projects

$2018\mathchar`-2023$ Scientific Computing for Efficient Machine Learning .

- Nonlinear Acceleration Methods and Optimization Techniques:
 - Focused on optimization methods for complex problems
 - Developed a nonlinear Truncated Generalized Conjugate Residual method (nlTGCR) to reduce memory usage by exploiting the symmetry of the Hessian
 - Developed the **first work** that solves the diverging or cycling behavior of gradient descentascent on minimax optimization problems by tapping into Anderson Acceleration
 - Proved accelerated convergence rates and demonstrated improved convergence compared to SOTA methods on classical and deep learning problems
- Parallel Computing:
 - Designed smart parallel computing algorithms to enhance the performance of machine learning models training
 - Achieved up to $5 \times$ speedup compared with the state-of-the-art GAN models
 - Achieved at least a $4\times$ speed-up compared to a state-of-the-art distributed tensor factorization method
- Transfer Learning:
 - Focused on robust machine learning deployment for data-scarcity scenarios
 - Developed high-accuracy out-of-distribution data models using domain adaptation
 - Showed significant improvement on immunotherapy response prediction and time series classification
- Generative Models with Enhanced Convergence
 - Focus on training generative models with enhanced convergence
 - Developed the **first work** that solves the diverging or cycling behavior of GDA on minimax optimization problems by tapping into Anderson Acceleration
 - Developed a normalizing flow that is able to learn both latent feature and tractable marginal likelihood estimation
 - Developed diffusion models to generate high-fidelity synthetic electronic health records

2018-2023 Healthcare.

• Longitudinal Electronic Health Records Phenotyping :

- Developed a semi-supervised tensor decomposition method that innovatively combines labeled and unlabeled data, enhancing the accuracy and relevance of patient phenotypes extracted from electronic health records
- Developed a distributed tensor decomposition framework that not only scales efficiently with large datasets but also significantly improves the interpretability and robustness of health data analysis, setting a new standard in healthcare analytics.
- Precision Medicine via ML-based Causal Inference
 - Spearheaded the development of cutting-edge machine learning methodologies aimed at revolutionizing precision medicine. This involved the intricate use of advanced analytical techniques to tailor patient care based on longitudinal observational data.
 - Innovated in the realm of causal sparse tensor estimation, deriving novel theoretical results that provide deeper insights into the complex relationships within high-dimensional and sparse healthcare data.
 - Developed a novel generative model specifically for Electronic Health Record (EHR) digital twins simulation, paving the way for more accurate and personalized patient care models and simulations in medical research.

Teaching Experience and Service

- 2023 **Organizer of ICLR Workshop**, *Topic: Generative AI and Foundation Models in Health*, Proposal Submitted.
- 2023 **Co-supervisor to two undergraduate students**, *Topic: Generative Models for EHRs*, Emory University, Under Review.
- 2023 Summer Organizer and Instructor of NSF REU/RET Computational Mathematics for Data Science, Topic: Fair Generative Modeling in Healthcare, Emory University. The work is accepted by 2023 AI In Health Conference
 - 2022 **Organizer of SIAM Conference in Optimization**, *Topic: Optimization for Health-care*, Seattle.
 - 2022 **Organizer of SIAM Conference on Computational Science and Engineering**, Topic: Acceleration methods for scientific and machine learning applications, Amsterdam.
 - 2022 Technology Chair of Conference on Health, Inference, and Learning (CHIL), Cambridge, Massachusetts.
- 2021 Summer Instructor of NSF REU/RET Computational Mathematics for Data Science, Topic: Learning From Images via Convex Normalizing Flow, Emory University, Atlanta.
- 2019-Present Program Committee/Reviewer of NeurIPS, ICLR, AISTATS, AAAI, AMIA, KDD, TKDE, CHIL, ECCB.
- 2019 Spring Teaching Assistant of Natural Language Processing, Emory University, Atlanta.
- 2018, 2019 Fall Teaching Assistant of Machine Learning, Emory University, Atlanta.

Awards and Grants

- 2023 **NSF Travel Grant**, Workshop on Sparse Tensor Computations, University of Illinois Urbana-Champaign .
- 2023 **NSF Travel Grant**, The fourth Mathematical and Scientific Machine Learning conference, Brown University.
- 2023 Acceleration and Extrapolation methods for Machine Learning, SIAM Postdoctoral Support Program, Under Review .
- 2012, 2013 Merit Student Award, Shanghai Finance University.
- 2011, 2012, 2013, **First-class scholarship**, Shanghai Finance University. 2014

Invited Talks

- 2023 Scientific Computing Meets Machine Learning (Invited Talk). In: Clemson University.
- 2023 Multi-Modal EHR Generative model (Invited Talk). In: INFORMS Annual Data Mining.
- 2023 Nonlinear Acceleration for minimax and nonlinear optimization (Invited Poster). In: Brown University.
- 2023 Optimization for Healthcare. In: SIAM Conference in Optimization.
- 2023 Acceleration methods for machine learning applications. In: SIAM Conference on Computational Science and Engineering.
- 2022 Acceleration Algorithms for Machine Learning Models (Invited Talk). In: *Weill Cornell Medicine*.
- 2021 Nonlinear Acceleration for Tensor Decomposition. In: SIAM Conference on Computational Science and Engineering.
- 2019 Tensor Decomposition for healthcare analytics. In: 2019 Georgia Scientific Computing Symposium.

Work Experience

2021 Summer Efficient Ensembling Uncertain Quantification, Machine Learning Internship, Lawrence Livermore National Laboratory, Livermore, CA.

- Aimed to compress deep learning models for better uncertainty quantification.
- Used iterative pruning methods to train model efficiently.
- Adopted snapshot learning rate scheme to obtain diverse ensemble models.
- Adopted focal loss and meta-learning to further enhance uncertainty quantification.
- 01/2021-04/2021 Continuous Glucose Monitors (CGM) Forecasting, Machine Learning Researcher, SiBionics MedTech, Shenzhen, China.
 - Calibrated model parameters of Continuous Glucose Monitors (CGM) system.
 - Developed a meal detection algorithm using real CGM data.
 - Benchmarked and developed glucose prediction algorithms using real CGM data.