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ABSTRACT

Graph unlearning, which involves deleting graph elements such as nodes, node
labels, and relationships from a trained graph neural network (GNN) model, is
crucial for real-world applications where data elements may become irrelevant,
inaccurate, or privacy-sensitive. However, existing methods for graph unlearning
either deteriorate model weights shared across all nodes or fail to effectively delete
edges due to their strong dependence on local graph neighborhoods. To address
these limitations, we introduce GNNDELETE, a novel model-agnostic layer-wise
operator that optimizes two critical properties, namely, Deleted Edge Consistency
and Neighborhood Influence, for graph unlearning. Deleted Edge Consistency
ensures that the influence of deleted elements is removed from both model weights
and neighboring representations, while Neighborhood Influence guarantees that
the remaining model knowledge is preserved after deletion. GNNDELETE updates
representations to delete nodes and edges from the model while retaining the rest
of the learned knowledge. We conduct experiments on seven real-world graphs,
showing that GNNDELETE outperforms existing approaches by up to 38.8% (AUC)
on edge, node, and node feature deletion tasks, and 32.2% on distinguishing deleted
edges from non-deleted ones. Additionally, GNNDELETE is efficient, taking 12.3x
less time and 9.3x less space than retraining GNN from scratch on WordNet18.

1 INTRODUCTION

Graph neural networks (GNNs) are being increasingly used in a variety of real-world applications (Li
et al., 2022a; Ying et al., 2019; Xu et al., 2022; 2019; Huang et al., 2021; Morselli Gysi et al., 2021;
Hu et al., 2020), with the underlying graphs often evolving over time. Machine learning approaches
typically involve offline training of a model on a complete training dataset, which is then used for
inference without further updates. In contrast, online training methods allow for the model to be
updated using new data points as they become available (Orabona, 2019; Nagabandi et al., 2019).
However, neither offline nor online learning approaches can address the problem of data deletion
(Cao & Yang, 2015b; Ginart et al., 2019), which involves removing the influence of a data point from
a trained model without sacrificing model performance. When data needs to be deleted from a model,
the model must be updated accordingly (Fu et al., 2022). In the face of evolving datasets and growing
demands for privacy, GNNs must therefore not only generalize to new tasks and graphs but also be
capable of effectively handling information deletion for graph elements from a trained model.

Despite the development of methods for machine unlearning, none of these approaches are applicable
to GNNs due to fundamental differences arising from the dependencies between nodes connected
by edges (which we show in this paper). Existing machine unlearning methods are unsuitable
for data with underlying geometric and relational structure, as graph elements can exert a strong
influence on other elements in their immediate vicinity. Furthermore, since the effectiveness of GNN
models is based on the exchange of information across local graph neighborhoods, an adversarial
agent can easily infer the presence of a data point from its neighbors if the impact of the data
point on its local neighborhood is not limited. Given the wide range of GNN applications and the
lack of graph unlearning methods, there is a pressing need to develop algorithms that enable GNN
models to unlearn previously learned information. This would ensure that inaccurate, outdated, or
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a Deleted Edge Consistency

b Neighborhood Influence

c Overview of GNNDELETE
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Figure 1: a. Illustration of Deleted Edge Consistency: It suggests that the predicted probability of deleted
edges after unlearning should be random, such that it looks like the deleted data was not used for training before.
b. Illustration of Neighborhood Influence: It implies that an appropriate unlearning should not change the
representations of the local neighborhood (nodes in the subgraph, not nodes themselves ) to maintain the original
causality. c. Overview of GNNDELETE: Given a trained GNN model and edge deletion request, GNNDELETE
outputs unlearned representations efficiently by only learning a small deletion operator WD . It also ensures
representation quality by minimizing a loss function that satisfies the two key properties proposed above.

privacy-concerned graph elements are no longer used by the model, thereby preventing security
concerns and performance degradation. In this paper, we take a step towards building an efficient and
general-purpose graph unlearning method for GNNs.

Designing graph unlearning methods is a challenging task. Merely removing data is insufficient to
comply with recent demands for increased data privacy because models trained on the original data
may still contain information about removed features. A naive approach is to delete the data and
retrain a model from scratch, but this can be prohibitively expensive, especially in large datasets.
Recently, efforts have been made to achieve efficient unlearning based on exact unlearning (Brophy
& Lowd, 2021; Sekhari et al., 2021; Hase et al., 2021; Ullah et al., 2021). The core idea is to retrain
several independent models by dividing a dataset into separate shards and then aggregating their
predictions during inference. Such methods guarantee the removal of all information associated with
the deleted data. However, in the context of GNNs, dividing graphs destroys the structure of the
input graph, leading to poor performance on node-, edge- and graph-level tasks. To address this
issue, Chen et al. (2022b) uses a graph partitioning method to preserve graph structural information
and aggregates predictions across individually retrained shards to produce predictions. However,
this approach is still less efficient as the cost increases as the number of shards grows. In addition,
choosing the optimal number of shards is still unresolved and may require extra hyperparameter
tuning. Several approximation-based approaches (Guo et al., 2020; Ullah et al., 2021; He et al., 2021;
Shibata et al., 2021) avoid retraining a model from scratch on data subsets. While these approaches
have shown promise, Mitchell et al. (2022) demonstrated that these unlearning methods change the
underlying predictive model in a way that can harm model performance.

Present Work. We introduce GNNDELETE1, a general approach for graph unlearning that can delete
nodes, node labels, and relationships from any trained GNN model. We formalize two essential
properties that GNN deletion methods should satisfy: 1) Deleted Edge Consistency: predicted
probabilities for deleted edges in the unlearned model should be similar to those for nonexistent
edges. This property enforces GNNDELETE to unlearn information such that deleted edges appear
as unconnected nodes. 2) Neighborhood Influence: we establish a connection between graph
unlearning and Granger causality (Granger, 1969) to ensure that predictions in the local vicinity of the
deletion maintain their original performance and are not affected by the deletion. However, existing
graph unlearning methods do not consider this essential property, meaning they do not consider the
influence of local connectivity, which can lead to sub-optimal deletion. To achieve both efficiency
and scalability, GNNDELETE uses a layer-wise deletion operator to revise a trained GNN model.
When receiving deletion requests, GNNDELETE freezes the model weights and learns additional
small weight matrices that are shared across nodes in the graph. Unlike methods that attempt to

1Code and datasets for GNNDELETE can be found at https://github.com/mims-harvard/GNNDelete.
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retrain several small models from scratch or directly update model weights, which can be inefficient
and suboptimal, GNNDELETE learns small matrices for inference without changing GNN model
weights. To optimize GNNDELETE, we specify a novel objective function that satisfies Deleted Edge
Consistency and Neighborhood Influence and achieves strong deletion performance.

Our Contributions. We present our contributions as follows: 1⃝ We formalize the problem of graph
unlearning and define two key properties, Deleted Edge Consistency and Neighborhood Influence, for
effective unlearning on graph data. 2⃝ We propose GNNDELETE, a GNN data deletion approach that
achieves more efficient unlearning than existing methods without sacrificing predictive performance.
GNNDELETE is model-agnostic and can be applied to various GNN architectures and training
methodologies. 3⃝ The difference between node representations returned the baseline GNN model
and those revised by GNNDELETE is theoretically bounded, ensuring the strong performance of
GNNDELETE. 4⃝ We demonstrate the flexibility of GNNDELETE through empirical evaluations on
both link and node deletion tasks. Results show that GNNDELETE achieves effective unlearning
with 12.3x less time and 9.3x less computation than retraining from scratch.

2 RELATED WORK

Machine Unlearning. We organize machine unlearning research into four categories: 1) Retraining:
Retraining models from scratch to unlearn is a simple yet often inefficient approach, despite recent
efforts to develop efficient data partitioning and retraining methods (Bourtoule et al., 2021; Wu et al.,
2020; Liu et al., 2022b; Cao & Yang, 2015a; Golatkar et al., 2020; Izzo et al., 2021). However,
partitioning graphs can be challenging because the graph structure and learned node representations
of the partitioned graphs may be significantly different from the original graph. Furthermore, such
methods may not scale well to large datasets. 2) Output modification: Methods such as UNSIR
(Tarun et al., 2021) directly modify model outputs to reduce computational overhead. UNSIR first
learns an error matrix that destroys the output and then trains the destroyed model for two epochs
with clean data to repair the outputs. However, for graphs, the error destroys outputs for all edges, and
the training after that falls back to retraining the whole model. 3) Logit manipulation: Other methods
achieve unlearning by manipulating the model logits (Izzo et al., 2021; Baumhauer et al., 2022),
but these methods only apply to linear or logit-based models. 4) Weight modification: Unlearning
via weight modification is achieved by running an optimization algorithm. For example, Ullah et al.
(2021) proposed an unlearning method based on noisy stochastic gradient descent, while Guo et al.
(2020) achieves certified removal based on Newton updates. Other optimization methods that modify
weights include Thudi et al. (2022a) and Neel et al. (2021). Recent unlearning methods perturb
gradients (Ma et al., 2022) or model weights (Chen et al., 2021a). However, weight modification
approaches lack unique features for graphs and incur computation overheads, such as calculating the
inverse Hessian. In Appendix A, we provide details on unlearning methods for other models.

Graph Unlearning. We present an overview of the current state of the art in graph unlearning research.
GraphEraser (Chen et al., 2022b) attempts to address the graph unlearning problem by utilizing
graph partitioning and efficient retraining. They use a clustering algorithm to divide a graph into
shards based on both node features and structural information. A learnable aggregator is optimized
to combine the predictions from sharded models. However, the limitations of GraphEraser (Chen
et al., 2022b) are that it supports only node deletion. GraphEditor (Cong & Mahdavi, 2023) provides
a closed-form solution for linear GNNs to guarantee information deletion, including node deletion,
edge deletion, and node feature update. Additional fine-tuning can improve predictive performance.
However, GraphEditor is only applicable to linear structures, which is the case for most unlearning
algorithms, not only those designed for graph-structured data. As a result, it is not possible to
use existing non-linear GNNs or knowledge graphs with GraphEditor, and it struggles to process
larger deletion requests. Recently, Chien et al. (2022) proposed the first framework for certified
graph unlearning of GNNs. Their approach provides theoretical guarantees for approximate graph
unlearning. However, the framework is currently limited to certain GNN architectures and requires
further development to become a more practical solution for the broader range of GNNs. For more
details on related work, we refer the reader to Appendix A.

Connection with Adversarial Attacks and Defense for GNNs. To determine whether a data point
has been used to train a model, the success of a membership inference (MI) attack can be a suitable
measure for the quality of unlearning (Yeom et al., 2019; Sablayrolles et al., 2019). Defending
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against MI attacks is also a challenge that we care about when building unlearning models. Thudi
et al. (2022c) proposed using a novel privacy amplification scheme based on a new tighter bound
and subsampling strategy. Olatunji et al. (2021) showed that all GNN models are vulnerable to MI
attacks and proposed two defense mechanisms based on output perturbation and query neighborhood
perturbation. Liu et al. (2022a) treated the data to be unlearned as backdoored data. While defense
strategies against MI attacks can provide valuable insights for evaluating unlearning, it is important
to note that they serve a different purpose than unlearning itself.

3 PRELIMINARIES

Let G = (V, E ,X) be an attributed graph with n = |V| nodes, set of edges E , and nf -dimensional
node features X = {x0, . . . ,xn−1} where xi ∈ Rnf . We use A to denote the adjacency matrix
of G and degG : V → N to denote the degree distribution of graph G. Further, we use Sk

uv =
(Vk

uv, Ek
uv,X

k
uv) to represent a k-hop enclosing subgraph around nodes u and v.

Graph Neural Networks (GNNs). A GNN layer g can be expressed as a series of transformation func-
tions: g(G) = (UPD◦AGG◦MSG)(G) that takesG as input and produces n d-dimensional node repre-
sentations hu for u ∈ V (Figure 1). Within layer l, MSG specifies neural messages that are exchanged
between nodes u and v following edges in Auv by calculating pl

uv = MSG(hl−1
u ,hl−1

v ,Auv). The
AGG defines how every node u combines neural messages from its neighbors Nu and computes the
aggregated message P l

u = AGG({pl
uv|v ∈ Nu}). Finally, UPD defines how the aggregated messages

P l
u and hidden node states from the previous layer are combined to produce hl

u, i.e., final outputs of
l-th layer hl

u = UPD(P l
u,h

l−1
u ). The output of the last GNN layer is the final node representation,

zu = hL
u , where L is the number of GNN layers in the model.

Unlearning for GNNs. Let Ed ⊆ E denote the set of edges to be deleted and Er = E\Ed be the
remaining edges after the deletion of Ed fromG. We useGr = (Vr, Er,Xr) to represent the resulting
graph after deleting edge Ed. Here, Vr = {u ∈ V | degGr

(u) > 0} denotes the set of nodes that are
still connected to nodes in Gr, and Xr denotes the corresponding node attributes. Although the
above notations are specific to edge deletion, GNNDELETE can also be applied to node deletion by
removing all edges incident to the node that needs to be deleted from the model.

To unlearn an edge euv, the model must erase all the information and influence associated with euv
as if it was never seen during the training while minimizing the change in downstream performance.
To this end, we need to modify both the predicted probability of euv and remove its information from
its local neighborhood. Therefore, post-processing and logit manipulation are ineffective for deleting
edges from a GNN model because these strategies do not affect the rest of the graph. We denote a
classification layer f that takes node representations hL

u and hL
v as input and outputs the prediction

probability for edge euv. Given L layers and f , a GNN model m : G → R|E| can be expressed as
m(G) = (f ◦ gL · · · ◦ g1)(G), where gi is the ith GNN layer. The unlearned model m′ : G→ R|Er|

can be written as m′(Gr) = (f ◦ g′L · · · ◦ g′1)(Gr), which are L stacked unlearned GNN layers g′i
operating on the graph Gr.

4 GNNDELETE: A GENERAL STRATEGY FOR GRAPH UNLEARNING

To ensure effective edge deletion from graphs, the GNN model should ignore edges in Ed and not
be able to recognize whether a deleted edge euv ∈ Ed is part of the graph. Furthermore, the model
should ignore any influence that a deleted edge has in its neighborhood. To this end, we introduce
two properties for effective graph unlearning and a layer-wise deletion operator that implements the
properties and can be used with any GNN to process deletions in Ed.

Problem Formulation (Graph Unlearning). Given a graph G = (V, E ,X) and a fully trained
GNN model m(G), we aim to unlearn every edge euv ∈ Ed from m(G), where Ed is a set of edges to
be deleted. The goal is to obtain an unlearned model m′(G) that is close to the model output that
would have been obtained had the edges in Ed been omitted from training. To achieve this, we require
that the following properties hold:

• Deleted Edge Consistency: If euv ∈ Ed, then m′(G) should output a prediction that is independent
of the existence of the edge euv, i.e., the deletion of euv should not have any influence on the
predicted output.
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• Neighborhood Influence: If euv /∈ Ed, then m′(G) should output a prediction that is close to m(G),
i.e., the deletion of edges in Ed should not have any significant impact on predictions in the rest of
the graph.

4.1 REQUIRED PROPERTIES FOR SUCCESSFUL DELETION ON GRAPHS

Deleting information from a graph is not a trivial task because the representations of nodes and edges
are dependent on the combined neighborhood representations. The following two properties show
intuitive assumptions over the deletion operator for effective unlearning in GNNs:

1) Deleted Edge Consistency. The predicted probability from the unlearned model m′ for an edge
euv should be such that it is hard to determine whether it is a true edge or not. The unlearned GNN
layer g′l should not be aware of the edge existence. Formally, we define the following property:
Definition 1 (Deleted Edge Consistency). Let euv denote an edge to be deleted, gl be the l-th layer
in a GNN with output node representation vectors hl

u, and the unlearned GNN layer g′l with h′l
u.

The unlearned layer g′l satisfies the Deleted Edge Consistency property if it minimizes the difference
between node-pair representations ϕ(h′

u,h
′
v), and ϕ(hp,hq) of two randomly chosen nodes p, q ∈ V:

E
p,q∈RV

[ϕ(h′l
u,h

′l
v )− ϕ(hp,hq)] = δ, (1)

where ϕ is a readout function (e.g., dot product, concatenation) that combines node representations
h′l
u and h′l

v , ∈R denotes a random choice from V , and δ is an infinitesimal constant.

2) Neighborhood Influence. While the notion of causality has been used in explainable machine
learning, to the best of our knowledge, we propose the first effort of modifying a knowledge
graph using a causal perspective. Formally, removing edge euv from the graph requires unlearning
the influence of euv from the subgraphs of both nodes u and v. In this work, we propose the
Neighborhood Influence property which leverages the notion of Granger causality (Granger, 1969;
Bressler & Seth, 2011) and declares a causal relationship ψ({hu|u ∈ Suv}) → euv between
variables ψ({hu|u ∈ Suv}) and euv if we are better able to predict edge euv using all available node
representations in Suv than if the information apart from ψ({hu|u ∈ Suv}) had been used. Here,
ψ(·) is an operator that combines the node representations in subgraph Suv. In the context of graph
unlearning, if the absence of node representations decreases the prediction confidence of euv, then
there is a causal relationship between the node representation and the euv prediction.

Here, we characterize the notion of deletion by extending Granger causality to local subgraph
causality, i.e., an edge euv dependent on the subgraphs associated with both nodes u and v. In
particular, removing euv should not affect the predictions of Suv yielding the following property:
Definition 2 (Neighborhood Influence). Let euv ∈ Ed denote an edge inG to be deleted, gl be the l-th
layer in a GNN with output node representation vectors hl

u, and the unlearned GNN layer g′l with h′l
u.

The unlearned layer g′l satisfies the Neighborhood Influence property if it minimizes the difference
of all node-subset representations ψ({hl

w|w ∈ Suv}) comprising euv with their corresponding
node-subset representations ψ({h′l

w|w ∈ Suv/euv
}) where euv is deleted, i.e.,

ψ({hl
w|w ∈ Suv})− ψ({h′l

w|w ∈ Suv/euv
})] = δ, (2)

where ψ is an operator that combines the elements of Suv (e.g., concatenation, summation), Suv/euv

represent the subgraph excluding the information from eij , and δ is an infinitesimal constant.

4.2 LAYER-WISE DELETION OPERATOR

To achieve effective deletion of an edge euv from a graph G, it is important to eliminate signals with
minor contributions to predicting the edges and develop mechanisms that can tune or perturb any
source of node or edge information that aids in the prediction of euv. Perturbing weights or other
hyperparameters of the GNN model can affect decisions for multiple nodes and edges in G due to
information propagation through the local neighborhood of each node. In order to allow for the
deletion of specific nodes and edges, we introduce a model-agnostic deletion operator DEL that can
be applied to any GNN layer.

Deletion Operator. Following the notations of Section 3, for the l-th GNN layer gl(G) with output
dimension dl, we define an extended GNN layer with unlearning capability as (DELl ◦ gl)(G) with
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the same output dimension dl . Given an edge euv that is to be removed, DEL is applied to the node
representations and is defined as:

DELl =

{
ϕ if w ∈ Sl

uv

1 otherwise
, (3)

where 1 is the identity function, and ϕ : Rn×dl → Rn×dl

can be any differentiable function that
takes as input the output node representations of g. In this work, ϕ is considered as an MLP with
weight parameters W l

D. Similarly to other GNN operators, the weights W l
D of our DEL operator are

shared across all nodes to achieve efficiency and scalability.

Local Update. Defining an operator that acts only in the local neighborhood Suv enables targeted
unlearning, keeping the previously learned knowledge intact as much as possible. If node u is within
the local neighborhood of euv , DEL is activated. For other nodes, DEL remains deactivated and does
not affect the hidden states of the nodes. This ensures that the model will not forget the knowledge it
has gained before during training and the predictive performance on E\Suv will not drop.

By applying the deletion operator DEL to every GNN layer, we expect the final representations to
reflect the unlearned information in the downstream task. Next, we show a theoretical observation
over the unlearned node representations that indicates a stable behavior of the deletion operator:
Theorem 1. (Bounding edge prediction using initial model m and unlearned model m′) Let euv be
an edge to be removed, WL

D be the weight matrix of the deletion operator DELL, and normalized
Lipschitz activation function σ(·). Then, the norm difference between the dot product of the final node
representations from the initial model zu, zv and from the unlearned one z′

u, z
′
v is bounded by:

⟨zu, zv⟩ − ⟨z′
u, z

′
v⟩ ≥ −1 + ∥WL

D∥2

2
∥zu − zv∥2, (4)

where WL
D denotes the weight matrix of the deletion operator for the l-th GNN layer.

The proof is in Appendix B. By Theorem 1, ⟨z′
u, z

′
v⟩, and consequently the prediction probability for

edge euv from the unlearned model cannot be dissimilar from the baseline. Nevertheless, DELl is a
layer-wise operator, which provides stable node embeddings as compared to the initial ones.

4.3 MODEL UNLEARNING

Moving from a layer-wise operator to the whole GNN model, our method GNNDELETE applies
DEL to every GNN layer, leading to a total number of trainable parameters

∑
l (d

l)2. As the number
of trainable parameters in GNNDELETE is independent of the size of the graph, it is compact and
scalable to larger graphs and the number of deletion requests. Considering the properties defined in
Section 4.1, we design two loss functions and compute them in a layer-wise manner. Specifically, for
the l-th GNN layer we first compute the Deleted Edge Consistency loss:

Ll
DEC = L({[h′l

u;h
′l
v ]|euv ∈ Ed}, {[hl

u;h
l
v]|u, v ∈R V}), (5)

and the Neighborhood Influence loss:

Ll
NI = L(∥w {h′l

w|w ∈ Sl
uv/euv}, ∥w {hl

w|w ∈ Sl
uv}), (6)

where [h′l
u; h′l

v ] denotes the concatenation of two vectors, and ∥ denotes the concatenation of
multiple vectors. Note that according to Equations 1 and 2, we choose the functions ϕ, ψ to be the
concatenation operators. During the backward pass, the deletion operator at the l-th GNN layer is
only optimized based on the weighted total loss at the l-th layer, i.e.

W l∗

D = argmin
W l

D

Ll = argmin
W l

D

λLl
DEC + (1− λ)Ll

NI, (7)

where λ ∈ [0, 1] is a regularization coefficient that balances the trade-off between the two properties,
L refers to the distance function. We use Mean Squared Error (MSE) throughout the experiments.

Broad Applicability of GNNDELETE. GNNDELETE treats node representations in a model-
agnostic manner, allowing us to consider graph unlearning in models beyond GNNs. Graph trans-
formers (Ying et al., 2021; Rampášek et al., 2022) have been proposed recently as an extension
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of the Transformer architecture (Vaswani et al., 2017) for learning representations on graphs. The
DEL operator can also be applied after the computation of the node representations in such models.
For example, the MPNNl

e(X
l,El,A) layer in GraphGPS (Rampášek et al., 2022, Equation 2) can

be replaced with the unlearned version (DEL ◦ MPNNl
e). Similarly, in the Graphormer layer, DEL

operator can be applied after the multi-head attention MHA layer (Rampášek et al., 2022, Equation
8).

5 EXPERIMENTS

We proceed with the empirical evaluation of GNNDELETE. We examine the following questions:
Q1) How does GNNDELETE perform compared to existing state-of-the-art unlearning methods? Q2)
Can GNNDELETE support various unlearning tasks including node, node label, and edge deletion?
Q3) How does the interplay between Deleted Edge Consistency and Neighborhood Influence property
affect deletion performance? Appendix C.1 provides a detailed definition of performance metrics.

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate GNNDELETE on several widely-used graphs at various scales. We use 5
homogeneous graphs: Cora (Bojchevski & Günnemann, 2018), PubMed (Bojchevski & Günnemann,
2018), DBLP (Bojchevski & Günnemann, 2018), CS (Bojchevski & Günnemann, 2018), OGB-Collab
(Hu et al., 2020), and 2 heterogeneous graphs: OGB-BioKG (Hu et al., 2020), and WordNet18RR
(Dettmers et al., 2018). Table 4 includes details on graph datasets.

GNNs and Baselines. We test with four GNN architectures and two graph types to show the flexibility
of our GNNDELETE operator. In particular, we test on GCN (Kipf & Welling, 2017), GAT (Veličković
et al., 2018), and GIN (Xu et al., 2019) for homogeneous graphs, and R-GCN (Schlichtkrull et al.,
2018) and R-GAT (Chen et al., 2021b) for heterogeneous graphs. We consider four baseline methods:
i) GRAPHEDITOR (Cong & Mahdavi, 2023), a method that finetunes on a closed-form solution of
linear GNN models; ii) CERTUNLEARN (Chien et al., 2022), a certified unlearning approach based
on linear GNNs; iii) GRAPHERASER (Chen et al., 2022b), a re-training-based machine unlearning
method for graphs; iv) GRADASCENT, which performs gradient ascent on Ed with cross-entropy loss,
and v) DESCENT-TO-DELETE (Neel et al., 2021), a general machine unlearning method.

Unlearning Tasks and Downstream Tasks. Requests for graph unlearning can be broadly classified
into three categories: 1) edge deletion, which involves removing a set of edges Ed from the training
graph, 2) node deletion, which involves removing a set of nodes Nd from the training graph, and 3)
node feature unlearning, which involves removing the node feature Xd from the nodes Nd. Deletion
of information can have a significant impact on several downstream tasks. Therefore, we evaluate
the effects of graph unlearning on three different downstream tasks, namely, link prediction, node
classification, and graph classification.

Setup. We evaluate the effectiveness of GNNDELETE on edge deletion tasks and also demonstrate
its ability to handle node deletion and node feature unlearning tasks. We perform experiments
on two settings: i) an easier setting where we delete information far away from test set Et in the
graph, and ii) a harder setting where we delete information proximal to test set Et in the graph. To
perform edge deletion tasks, we delete a varying proportion of edges in Ed between [0.5%-5.0%]
of the total edges, with a step size of 0.5%. For larger datasets such as OGB (Hu et al., 2020),
we limit the maximum deletion ratio to 2.5%. We report the average and standard error of the
unlearning performance across five independent runs. We use AUROC to evaluate the performance of
GNNDELETE for link prediction tasks, as well as Membership Inference (MI) (Thudi et al., 2022a)
for node deletion. Performance metrics are described in Appendix C.1. Additionally, we consider
two sampling strategies for Ed (Appendix C.2).

5.2 Q1: RESULTS – COMPARISON TO EXISTING UNLEARNING STRATEGIES

We compare GNNDELETE to the baseline unlearning techniques and present the results in Tables 1.
Across four GNN architectures, we find that GNNDELETE achieves the best performance on the
test edge set Et, outperforming GRAPHEDITOR, CERTUNLEARN and GRAPHERASER by 13.9%,
19.7% and 38.8%. Further, we observe that GNNDELETE achieves the highest AUROC on Ed,
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Table 1: Unlearning task: 2.5% edge deletion. Evaluation: link prediction. Dataset: DBLP and Word-
Net18. Reported is AUROC (↑) performance with the best marked in bold and the second best underlined.
GNNDELETE retains the predictive power of GNNs on Et while improving performance on Ed. GRAPHEDITOR
and CERTUNLEARN support unlearning for linear GNNs on homogeneous graphs (i.e., N/A). Table 7 shows
results on other downstream tasks and Tables 15-22 show results on other datasets and ratios of deleted edges.

Model
GCN GAT R-GCN R-GAT

Et Ed Et Ed Et Ed Et Ed

RETRAIN 0.964 ±0.003 0.506 ±0.013 0.956 ±0.002 0.525 ±0.012 0.800 ±0.005 0.580 ±0.006 0.891 ±0.005 0.783 ±0.009
GRADASCENT 0.555 ±0.066 0.594 ±0.063 0.501 ±0.020 0.592 ±0.017 0.490 ±0.001 0.502 ±0.002 0.490 ±0.001 0.492 ±0.003
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.527 ±0.002 0.500 ±0.000 0.538 ±0.013 0.500 ±0.000 0.512 ±0.003 0.500 ±0.000 0.545 ±0.015 0.500 ±0.000
GRAPHEDITOR 0.776 ±0.025 0.432 ±0.009 - - N/A N/A N/A N/A
CERTUNLEARN 0.718 ±0.032 0.475 ±0.011 - - N/A N/A N/A N/A
GNNDELETE 0.934 ±0.002 0.748 ±0.006 0.914 ±0.007 0.774 ±0.015 0.751 ±0.006 0.845 ±0.007 0.893 ±0.002 0.786 ±0.004

Table 2: Unlearning task: 2.5% edge deletion. Evaluation: MI attack. Dataset: DBLP and WordNet18.
Reported is the MI attack ratio (↑), with the best performance marked in bold and the second best underlined.
GRAPHEDITOR and CERTUNLEARN support unlearning for linear GNNs on homogeneous graphs (i.e., N/A).

DBLP WordNet18
Model GCN GAT GIN R-GCN R-GAT

RETRAIN 1.255 ±0.207 1.223 ±0.151 1.200 ±0.177 1.250 ±0.091 1.215 ±0.125
GRADASCENT 1.180 ±0.061 1.112 ±0.109 1.123 ±0.103 1.169 ±0.066 1.112 ±0.106
D2D 1.264 ±0.000 1.264 ±0.000 1.264 ±0.000 1.268 ±0.000 1.268 ±0.000
GRAPHERASER 1.101 ±0.032 1.182 ±0.104 1.071 ±0.113 1.199 ±0.048 1.173 ±0.104
GRAPHEDITOR 1.189 ±0.193 1.189 ±0.193 1.189 ±0.193 N/A N/A
CERTUNLEARN 1.103 ±0.087 1.103 ±0.087 1.103 ±0.087 N/A N/A
GNNDELETE 1.266 ±0.106 1.338 ±0.122 1.254 ±0.159 1.264 ±0.143 1.280 ±0.144

outperforming GRAPHEDITOR, CERTUNLEARN and GRAPHERASER by 32.2%, 27.9% and 25.4%.
GNNDELETE even outperforms RETRAIN-FROM-SCRATCH by 21.7% under this setting, proving
its capability of effectively unlearning the deleted edges. Interestingly, none of the existing baseline
methods have comparable performance to GNNDELETE on these performance metrics, including
GRAPHERASER, which ignores the global connectivity pattern and overfit to specific shards, as
well as GRAPHEDITOR and CERTUNLEARN, whose choice of linear architecture strongly limits the
power of the GNN unlearning. Our results demonstrate that baselines like DESCENT-TO-DELETE
and GRADASCENT lose almost their predictive prowess in making meaningful predictions and
distinguishing deleted edges because the weight updates are independent of the unlearning task
and affect all the nodes, including nodes associated with Et. In addition, CERTUNLEARN and
GRAPHEDITOR are not applicable due to their linear architectures. Please refer to the Appendix
for results on Cora (Tables 13-14), PubMed (Tables 15-16), DBLP (Tables 17-18), OGB-Collab
(Tables 19-20), and WordNet18 (Tables 21-22) using a deletion ratio of 0.5%, 2.5%, and 5%.

Results in Table 2 show the Membership Inference (MI) performance of baselines and GNNDELETE
for the DBLP and Wordnet18 using a deletion ratio of 2.5%. It shows that GNNDELETE outperforms
baselines for most GNN models, highlighting its effectiveness in hiding deleted data. Across five
GNN architectures, we find that GNNDELETE improves on the MI ratio score of all baselines:
GRAPHEDITOR (+0.083), CERTUNLEARN (+0.169) GRAPHERASER (+0.154), RETRAIN-FROM-
SCRATCH (+0.047), GRADASCENT (+0.134), and DESCENT-TO-DELETE (+0.086).

5.3 Q2: RESULTS – OTHER UNLEARNING TASKS AND GNNDELETE’S EFFICIENCY

Node Deletion. We examine the flexibility of GNNDELETE to handle node deletion. We delete
100 nodes and their associated edges from the training data and evaluate the performance of the
unlearning method on node classification and Membership Inference attacks. Results in Table 8 show
that GNNDELETE outperforms baselines on node classification while deleting nodes. GNNDELETE
outperforms GRAPHEDITOR and CERTUNLEARN by 4.7% and 4.0% in accuracy, respectively. It
is also 0.139 and 0.267 better than GRAPHEDITOR and CERTUNLEARN in terms of membership
inference attacks. Tables 9 and 10 show results for node feature unlearning and sequential unlearning.
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Time and Space Efficiency. We demonstrate that GNNDELETE is time-efficient as compared to
most unlearning baselines. For all methods, we use a 2-layer GCN/R-GCN architecture with a
trainable entity and relation embeddings with 128, 64, and 32 hidden dimensions trained on three
datasets (PubMed, CS, and OGB-Collab). We present the results of wall-clock time vs. graph
size in Figure 2 and observe that GNNDELETE consistently takes less time than existing graph
unlearning methods. In particular, GNNDELETE is 12.3× faster than RETRAIN-FROM-SCRATCH
on WordNet. For smaller graphs like DBLP, GNNDELETE takes 185 seconds less (18.5% faster) than
the pre-training stage of GRAPHEDITOR. Despite taking lower time, the predictive performances
of DESCENT-TO-DELETE and GRADASCENT are poor compared to GNNDELETE because they
are not tailored to incorporate the graph structure for unlearning. Regarding the space efficiency,
we measure the number of training parameters and show that GNNDELETE has the smallest model
size. In addition, the number of training parameters does not scale with respect to the graph size,
proving the efficiency and scalability of GNNDELETE. For instance, GNNDELETE takes 9.3× less
computation than GRAPHERASER. We further demonstrate that GNNDELETE can be more efficient
by only inserting a deletion operator after the last layer without losing much performance. Additional
results and details are in Tables 5-6.

5.4 Q3: RESULTS – DELETED EDGE CONSISTENCY VS. NEIGHBORHOOD INFLUENCE

We conducted ablations on two key properties of GNNDELETE, namely Deleted Edge Consistency
and Neighborhood Influence, by varying the regularization parameter λ in Equation 7. The results
presented in Table 3 demonstrate that both properties are necessary for achieving high AUROC on
both Et and Ed. We observed that as λ decreases, GNNDELETE focuses more on Neighborhood
Influence, which explains why the model’s performance on Et is close to the original, while it cannot
distinguish Ed from the remaining edges. Conversely, for higher values of λ, GNNDELETE focuses
more on optimizing the Deleted Edge Consistency property and can better distinguish between Ed
and Er. In summary, we observed a 5.56% improvement in the average AUROC for λ = 0.5.

Table 3: Ablation study on the interplay of Deleted
Edge Consistency and Neighborhood Influence prop-
erty. Unlearning task: 2.5% edge deletion. Eval-
uation: link prediction. Dataset: DBLP. The gap
is calculated as: |AUROC(Et)− AUROC(Ed)|. Best
overall deletion performance is achieved for λ = 0.5,
indicating that both properties are necessary to suc-
cessfully delete information from the GNN model
while minimizing negative effects on overall model
performance.

λ AUROC on Et AUROC on Ed Avg. AUROC (Gap)

0.0 0.964 ±0.003 0.492 ±0.012 0.728 (0.473)
0.2 0.961 ±0.003 0.593 ±0.011 0.777 (0.368)
0.4 0.950 ±0.005 0.691 ±0.010 0.821 (0.259)
0.5 0.934 ±0.002 0.748 ±0.006 0.841 (0.185)
0.6 0.927 ±0.001 0.739 ±0.006 0.834 (0.188)
0.8 0.893 ±0.003 0.759 ±0.008 0.823 (0.134)
1.0 0.858 ±0.004 0.757 ±0.004 0.808 (0.101)
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Figure 2: Comparison of efficiency on three datasets
(PubMed, CS, and OGB-Collab). We plot the retrain-
ing approach in solid lines, general unlearning meth-
ods in dotted lines, and graph unlearning methods in
dash-dotted lines. Results show that GNNDELETE
scales better than existing graph unlearning methods,
as its execution time is consistently lower than other
methods, especially for larger graphs.

6 CONCLUSION

We introduce GNNDELETE, a novel deletion operator that is both flexible and easy-to-use, and can
be applied to any type of graph neural network (GNN) model. We also introduce two properties,
denoted as Deleted Edge Consistency and Neighborhood Influence, which can contribute to more
effective graph unlearning. By combining the deletion operator with these two properties, we define a
novel loss function for graph unlearning. We evaluate GNNDELETE across a wide range of deletion
tasks including edge deletion, node deletion, and node feature unlearning, and demonstrate that it
outperforms existing graph unlearning models. Our experiments show that GNNDELETE performs
consistently well across a variety of tasks and is easy to use. Results demonstrate the potential of
GNNDELETE as a general strategy for graph unlearning.
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A FURTHER DETAILS ON RELATED WORK

Connection with Catastrophic Forgetting and Dynamic Network Embeddings. Despite the fact
of forgetting knowledge, we argue that catastrophic forgetting (Kemker et al., 2018) is not a good
fit for the machine unlearning setting. Specifically, catastrophic forgetting is 1) not targeted at a
particular set of data, 2) not guaranteed to forget, i.e. adversarial agents may still find out the presence
of what is forgotten in the training set; 3) not capable of handling an arbitrary amount of deletion
requests. Dynamic network embedding (Nguyen et al., 2018) learns network representations by
incorporating time information and can deal with data deletion. However, these methods are designed
to process graphs that are inherently changing over time. On the other hand, machine unlearning
aims at deleting a specific set of training data, while keeping the majority of the underlying graph
fixed. It aims at targeted data removal requests and is thus orthogonal to the above two approaches.

Connection with Techniques for Achieving Privacy in ML Models. Privacy-preserving is another
related privacy-preserving learning scheme, such as federated learning (FL) (Konečný et al., 2016).
To let FL models unlearn data in a similar privacy-preserving way, Liu et al. (2021) proposed the
first federated unlearning framework by leveraging historical parameter updates. Chen et al. (2021c)
proposed a new attack and metrics to improve privacy protection, which provides insights on practical
implementations of machine unlearning. Golatkar et al. (2021) proposed machine unlearning in a
mixed-privacy setting by splitting the weights into a set of core and forgettable user weights. Different
from privacy-preserving algorithms that aim at protecting data privacy during training and inference,
the goal of machine unlearning, most of the time, is to retrieve privacy, which has no conflict.

Machine Unlearning for Other Tasks. Given the increasing necessity of machine unlearning,
researches have studied machine unlearning algorithms tailored for other tasks. For example, Chen
et al. (2022a) and Li et al. (2022b) propose machine unlearning frameworks for recommendation
systems by considering the collaborative information. In addition, recent unlearning methods use
Bayesian and latent models (Nguyen et al., 2020; Kassab & Simeone, 2022; Sekhari et al., 2021).
Machine unlearning (MU) has also been applied for other tasks, including verification of MU
(Sommer et al., 2022), re-definition of MU (Thudi et al., 2022b), test of MU (Goel et al., 2022),
zero-shot MU (Chundawat et al., 2022), tree-based MU (Schelter et al., 2021), coded MU (Aldaghri
et al., 2021), pruning based federated MU (Wang et al., 2022), adaptive sequence deletion MU (Gupta
et al., 2021), MU for k-means (Ginart et al., 2019), MU for features and labels (Warnecke et al.,
2023), MU for spam email detection (Parne et al., 2021), MU for linear models (Mahadevan &
Mathioudakis, 2021). While the above mentioned methods have shown new directions for machine
unlearning, they are not comparable to our work as we focus on general graph unlearning instead of a
specific ML task.

B PROOF OF THEOREM 1

For the L-th GNN layer, we assume for sake of simplicity that the final node representation zu for a
node u is computed as:

zu = σ
(
W1h

L−1
u +

∑
v∈Nu

W2h
L−1
v

)
, (8)

where σ is the sigmoid function, and, and W1,W2 are the weight parameters for the GNN layer.
Similarly, for the unlearned L-th layer we have:

z′
u = σ(WL

DzL
u ), (9)

where WL
D ’s are the weight parameters for the DEL operator. For a given edge euv ∈ Ed that is to be

deleted, we expect for the dot product ⟨zu, zv⟩ to be maximized, as it is an existent edge in the initial
graph, while ⟨z′

u, z
′
v⟩ to be fixed, so that the edge probability is close to 0.5, following the Deleted

Edge Consistency property. Specifically, the difference of the two terms can be bounded as:

⟨zu, zv⟩ − ⟨z′
u, z

′
v⟩ =

1

2
(∥zu∥2 + ∥zv∥2 − ∥zu − zv∥2)−

1

2
(∥z′

u∥2 + ∥z′
v∥2 + ∥z′

u − z′
v∥2)

⟨zu, zv⟩ − ⟨z′
u, z

′
v⟩

Normalization
= 1− 1

2
∥zu − zv∥2 − 1− 1

2
∥z′

u − z′
v∥2

(10)
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Then, simplifying Equations 8 and 9, we have:

∥z′
u − z′

v∥ = ∥σ(WL
Dzu)− σ(WL

Dzv)∥
Lipschitz σ

≤ ∥WL
Dzu −WL

Dzv∥
Cauchy-Schwartz

≤ ∥WL
D∥∥zu − zv∥

and applying that to Equation 10:

⟨zu, zv⟩ − ⟨z′
u, z

′
v⟩ ≥ −1

2
∥zu − zv∥2 −

1

2
∥WL

D∥2∥zu − zv∥2

⟨zu, zv⟩ − ⟨z′
u, z

′
v⟩ ≥ −1

2
(1 + ∥WL

D∥2)∥zu − zv∥2
. (11)

C EXPERIMENTS

In this section, we give further details on the experimental setup. We firstly present the used
evaluation metrics for the edge and node deletion, then we describe the sampling strategies for Et, and
Ed, dataset statistics, and finally we present the full results for the model efficiency and the prediction
performance of the models.

C.1 EVALUATION METRICS

We choose the following performance metrics to measure the effectiveness of the deletion operation
on the set of the deleted edges Ed and the test set Et that contains a subset of the remaining edges:.
For the edge deletion case, we have:

• AUROC and AUPRC on the test set Et: these metrics measure the prediction perfomance of
each graph graph learning model over the existent edges of the test set Et. High values of
AUROC and AUPRC on Et show that the unlearned model’s performance on the original
test set is not affected by the deletion of an edge subset.

• AUROC and AUPRC on the set of deleted edges Ed: these metrics quantify the ability of the
unlearned models to distinguish deleted edges (contained in Ed) from the remaining edges
(contained in Er). For the computation of the area under the curve, we take into account the
total of the deleted edges in Ed and we sample an equal amount of remaining edges from Er.
Then, we set the labels of the deleted edges equal to 0 (since they do not exist after deletion),
and the labels of the remaining edges to 1. Higher values of the AUC on Ed show that the
model is more capable of distinguishing edges in Ed from edges in Er.

For the node deletion case, we capitalize on the evaluation for privacy leakage with Membership
Inference (MI) (Thudi et al., 2022a) attacks. An unlearned model f ′ effectively forgets Ed if an MI
attacker returns that Ed is not present in the training set, i.e., the probability of predicting the presence
of Ed decreases.

• MI Ratio: this metric quantifies the success rate of a Membership Inference (MI) attack,
by calculating the ratio of presence probability of Ed before and after the deletion operator.
We adapt the implementation from Olatunji et al. (2021) in our experiments. If the ratio is
higher than 1, it means that the model contains less information about Ed. If the ratio is less
than 1, it means the model contains more information about Ed.

C.2 SAMPLING OF EDGES IN Et AND Ed

We sample 5% of the total edges as the test set (Et) to evaluate the model’s performance on link
prediction and sample another 5% as validation set for selecting the best model. We propose two
sampling strategies for sampling Ed for edge deletion tasks: i) Ed,OUT refers to randomly sampling
edges outside the 2-hop enclosing subgraph of Et, i.e., Ed,OUT = {e|e /∈ S2

Et
}; and ii) Ed,IN refers

to randomly sampling edges from the 2-hop enclosing subgraph of Et, i.e., Ed,IN = {e|e ∈ S2
Et
}.

We note that deleting Ed,IN is more difficult than deleting Ed,OUT as the deletion operation will have
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an impact on the local neighborhood of Ed,IN, where Et is located. For comparison of these two
sampling strategies, please refer to the Appendix (Tables 13-14) fore results on Cora, Tables 15-16
for results on PubMed, Tables 17-18 on DBLP, Tables 19-20 on OGB-Collab, and Tables 21-22 on
WordNet18.

C.3 EVALUATED DATASETS

Table 4 presents the size of the graphs and the maximum number of deleted edges in the experiments,
ranging from small to large scales.

Table 4: Statistics of evaluated datasets and a maximum number of deleted edges.

Graph # Nodes # Edges # Unique edge types Max # deleted edges

Cora 19,793 126,842 1 6,342
PubMed 19,717 88,648 1 4,432
DBLP 17,716 105,734 1 5,286
CS 18,333 163,788 1 8,189
OGB-Collab 235,868 2,358,104 1 117,905

WordNet18 40,943 151,442 18 7,072
OGB-BioKG 93,773 5,088,434 51 127,210

C.4 MODEL EFFICIENCY

Space efficiency. Space efficiency is reflected by the number of trainable parameters a model has.
We report number of parameters for all methods in Table 5. We can observe that GNNDELETE has
the smallest model size, which does not scale with respect to the size of the graph. This proves the
efficiency and scalability of GNNDELETE. It is also significantly smaller than GRAPHERASER,
where we usually have to divide the original graph into 10 or 20 shards, each requiring a separate
GNN model.

Table 5: Space efficiency of unlearning models. All models are trained on OGB-Collab and OGB-BioKG to
delete 5.0% of edges, using a 2-layer GCN/R-GCN architecture with 128, 64, 32 as hidden dimensions, with the
number of shards in GRAPHERASER as 10. Shown is the number of trainable parameters in each deletion model.

Model OGB-Collab OGB-BioKG

RETRAIN 5,216 12,009,792
GRADASCENT 5,216 12,009,792
D2D 5,216 12,009,792
GRAPHERASER 52,160 120,097,920
GRAPHEDITOR 5,216 N/A
CERTUNLEARN 5,216 N/A
GNNDELETE 5,120 5,120

Layer-wise unlearning vs. Last layer-only unlearning. Even though GNNDELETE achieves good
efficiency, it may still be expensive when deleting a large number of nodes/edges. GNNDELETE
can function under such extreme conditions and alleviate the computation cost by adopting a Last
layer-only strategy, where a single deletion operator is inserted after the last layer. As shown in
Table 6, last layer-only GNNDELETE does not lead to significant performance degradation, with
only 0.7% and 0.9% drop on link prediction performance on Et and Ed, respectively. While existing
unlearning models don’t have such flexibility to run in an lightweight fashion.

C.5 EVALUATIONS ON OTHER DOWNSTREAM TASKS

We recognize that the deleted information has an influence on many downstream tasks. For example,
removing edges impacts node classification performance as well. We evaluate unlearning methods on
three canonical downstream tasks: 1) node classification, 2) link prediction, and 3) graph classification.
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Table 6: Comparison between layer-wise and last layer-only GNNDELETE. Unlearning task: 2.5% edge
deletion on DBLP. Evaluated on: link prediction. Performance is in AUROC (↑).

Model Et Ed

RETRAIN 0.964 ±0.003 0.506 ±0.013
GNNDELETE - layer-wise 0.934 ±0.002 0.748 ±0.006
GNNDELETE - last layer-only 0.927 ±0.005 0.739 ±0.005

In addition to link prediction evaluation in Table 1, we summarize the performance on other two
downstream tasks in Table 7.

Table 7: Unlearning task: 2.5% edge deletion. Evaluated on: node classification on DBLP (Accuracy (↑))
and graph classification on ogbg-molhiv (AUROC (↑)). The best performance is marked in bold and the
second best in nderline.

Model Node classification Graph classification

RETRAIN 0.810 ±0.021 0.758 ±0.068
GRADASCENT 0.614 ±0.042 0.601 ±0.063
D2D 0.250 ±0.000 0.572 ±0.013
GRAPHERASER 0.682 ±0.044 0.596 ±0.032
GRAPHEDITOR 0.711 ±0.039 0.613 ±0.035
CERTUNLEARN 0.739 ±0.024 0.607 ±0.028
GNNDELETE 0.782 ±0.027 0.710 ±0.041

C.6 NODE DELETION

GNNDELETE can be applied to unlearn nodes in a graph by optimizing the same loss function in
Eq. 7. Table 8 presents the results of randomly deleting 100 nodes on DBLP dataset. In addition to
the standard node classification evaluation, we also present the performance on link prediction and
graph classification.

Table 8: Unlearning task: 100 node deletion. Evaluated on: node classification, link prediction (AUROC
(↑)). Dataset: DBLP. The best performance is marked in bold and the second best in underline.

Model Accuracy F1 MI ratio Link prediction

RETRAIN 0.845 ±0.008 0.841 ±0.004 1.515 ±0.034 0.973 ±0.002
GRADASCENT 0.392 ±0.026 0.341 ±0.035 1.021 ±0.113 0.571 ±0.032
D2D 0.250 ±0.000 0.250 ±0.000 1.755 ±0.065 0.507 ±0.002
GRAPHERASER 0.718 ±0.014 0.716 ±0.011 0.975 ±0.083 0.513 ±0.004
GRAPHEDITOR 0.765 ±0.012 0.749 ±0.006 1.260 ±0.088 0.697 ±0.031
CERTUNLEARN 0.743 ±0.027 0.738 ±0.022 1.134 ±0.009 0.713 ±0.025
GNNDELETE 0.793 ±0.016 0.768 ±0.009 1.401 ±0.082 0.938 ±0.004

C.7 NODE FEATURE DELETION

GNNDELETE can be applied to update node features by optimizing the same loss function in Eq. 7.
For node and edge level evaluation, we randomly select 100 nodes and update Xd = 0. For graph
classification evaluation, we randomly choose 100 graphs and update Xd = 0.

C.8 SEQUENTIAL UNLEARNING

Problem Formulation 2 (Sequential Graph Unlearning). Given a graph G = (V, E ,X), a fully
trained GNN model m(G), and a sequence of edges Eseq,d = {Ed,0, Ed,1, . . . , Ed,S}, |Eseq,d| = S,
where each deletion request Ed,i ∈ Eseq,d is a standard graph unlearning problem (as defined in Sec.
4). Then, sequential graph unlearning aims to unlearn every batch of edges Ed,i ∈ Eseq,d from the
GNN model m(G) in a sequential manner meaning that a request Ed,i+1 is given to the unlearned
model after Ed,i has been successfully unlearned.

17



Published as a conference paper at ICLR 2023

Table 9: Unlearning task: 100 node feature update. Evaluated on: node classification on DBLP (Acc. (↑)),
link prediction on DBLP (AUROC (↑)), and graph classification on ogbg-molhiv (AUROC (↑)). Bold: best
performance. Underline: second best performance.

Model Node classification Link prediction Graph classification

RETRAIN (reference only) 0.810 ±0.021 0.897 ±0.025 0.753 ±0.042
GRADASCENT 0.614 ±0.042 0.655 ±0.030 0.623 ±0.046
D2D 0.525 ±0.009 0.504 ±0.003 0.586 ±0.017
GRAPHERASER 0.682 ±0.044 0.579 ±0.021 0.592 ±0.032
GRAPHEDITOR 0.711 ±0.039 0.683 ±0.031 0.630 ±0.026
CERTUNLEARN 0.739 ±0.024 0.667 ±0.019 0.687 ±0.030
GNNDELETE 0.782 ±0.027 0.850 ±0.027 0.724 ±0.027

GNNDelete is designed to handle a sequence of deletion requests. In stark contrast to existing
deletion techniques (GraphEraser (Chen et al., 2022b), GraphEditor (Cong & Mahdavi, 2023),
Descent-to-Delete (Neel et al., 2021)), GNNDelete does not require retraining from scratch for
additional incoming deletion requests. It achieves sequential unlearning by continuing training the
same deletion operator. As Ed,i ̸= Ed,i+1, we can maintain a binary mask to easily turn on and off the
deletion operator for specific nodes following the definition in Eq. 3. This is specified by the binary
mask containing information about what node representations are to be updated in the DEL operator.

Table 10: Unlearning task: 2.5% sequential edge deletion, with a batch size of 0.5%. Evaluated on: link
prediction. Dataset: DBLP. Performance is shown in AUROC (↑) on GCN architecture.

Ratio (%) Et Ed

0.5 0.951 0.829
1.0 0.949 0.808
1.5 0.943 0.791
2.0 0.938 0.776
2.5 0.934 0.748

C.9 COMPARISON WITH DYNAMIC NETWORK EMBEDDING (DNE)

Graph unlearning can be formulated as a special case of dynamic network. Despite that, we argue
that they are fundamentally different. Graph unlearning usually refers to deleting a small part of
the graph, while the majority of the graph remains stable. We want a graph unlearning algorithm to
selectively forget something it has captured during training. On the contrary, dynamic networks are
intrinsically changing over time. The goal of DNE methods is to learn such evolution.

As shown in Table 11, DNE methods are not applicable to graph unlearning task out of the box,
emphasizing the need for algorithms designed for graph unlearning.

Table 11: Comparison of Graph Unlearning and Dynamic Network Embedding (DNE). Unlearning task: 2.5%
edge deletion. Evaluated on: link prediction. Dataset: DBLP. Performance is in AUROC (↑).

Model Et Ed

RETRAIN (reference only) 0.964 ±0.003 0.506 ±0.013
JODIE (DNE) 0.801 ±0.042 0.613 ±0.026
GNNDELETE (Unlearning) 0.934 ±0.002 0.748 ±0.006

C.10 EVALUATE NODE EMBEDDINGS ON OUTLIER DETECTION

D ADDITIONAL DETAILS ON RESULTS

We detail all the results from different graphs, GNN architectures, models, and deletion ratios.
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Table 12: Unlearning task: 2.5% edge deletion on DBLP. Evaluated on: outlier detection. We compute the
percentage (↑) of edges that are classified as regular edges, i.e., non-outliers on GCN architecture.

Model Percentage

RETRAIN (reference only) 0.746
GRADASCENT 0.503
D2D 0.517
GRAPHERASER 0.563
GRAPHEDITOR 0.642
CERTUNLEARN 0.625
GNNDELETE 0.710

Table 13: Unlearning task: edge deletion when Ed = Ed,OUT. Evaluation: link prediction. Dataset: Cora.
Reported is AUROC (↑) performance with the best marked in bold and the second best underlined.

Ratio
(%)

Model GCN GAT GIN
Et Ed Et Ed Et Ed

0.5

RETRAIN 0.965 ±0.002 0.783 ±0.018 0.961 ±0.002 0.756 ±0.013 0.961 ±0.002 0.815 ±0.015
GRADASCENT 0.536 ±0.010 0.618 ±0.014 0.517 ±0.017 0.558 ±0.034 0.751 ±0.049 0.778 ±0.043
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.563 ±0.002 0.500 ±0.000 0.553 ±0.013 0.500 ±0.000 0.554 ±0.009 0.500 ±0.000
GRAPHEDITOR 0.805 ±0.077 0.614 ±0.054 - - - -
CERTUNLEARN 0.814 ±0.065 0.603 ±0.039 - - - -
GNNDELETE 0.958 ±0.002 0.977 ±0.001 0.953 ±0.002 0.979 ±0.001 0.956 ±0.003 0.953 ±0.010

2.5

RETRAIN 0.966 ±0.001 0.790 ±0.009 0.961 ±0.002 0.758 ±0.011 0.961 ±0.003 0.833 ±0.010
GRADASCENT 0.504 ±0.002 0.494 ±0.004 0.510 ±0.019 0.522 ±0.023 0.603 ±0.039 0.605 ±0.030
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.542 ±0.002 0.500 ±0.000 0.519 ±0.013 0.500 ±0.000 0.563 ±0.009 0.500 ±0.000
GRAPHEDITOR 0.754 ±0.023 0.583 ±0.056 - - - -
CERTUNLEARN 0.795 ±0.037 0.578 ±0.015 - - - -
GNNDELETE 0.953 ±0.002 0.912 ±0.004 0.949 ±0.003 0.914 ±0.004 0.953 ±0.002 0.922 ±0.006

5.0

RETRAIN 0.966 ±0.002 0.812 ±0.006 0.961 ±0.001 0.778 ±0.006 0.960 ±0.003 0.852 ±0.006
GRADASCENT 0.557 ±0.122 0.513 ±0.106 0.520 ±0.042 0.517 ±0.036 0.580 ±0.027 0.572 ±0.018
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.514 ±0.002 0.500 ±0.000 0.523 ±0.013 0.500 ±0.000 0.533 ±0.009 0.500 ±0.000
GRAPHEDITOR 0.721 ±0.048 0.545 ±0.056 - - - -
CERTUNLEARN 0.745 ±0.033 0.513 ±0.012 - - - -
GNNDELETE 0.953 ±0.003 0.882 ±0.005 0.951 ±0.002 0.872 ±0.004 0.950 ±0.003 0.914 ±0.004

Table 14: Unlearning task: edge deletion when Ed = Ed,IN. Evaluation: link prediction. Dataset: Cora.
Reported is AUROC (↑) performance with the best marked in bold and the second best underlined.

Ratio
(%)

Model GCN GAT GIN
Et Ed Et Ed Et Ed

0.5

RETRAIN 0.965 ±0.002 0.511 ±0.024 0.961 ±0.001 0.513 ±0.024 0.960 ±0.003 0.571 ±0.028
GRADASCENT 0.528 ±0.008 0.588 ±0.014 0.502 ±0.002 0.543 ±0.058 0.792 ±0.046 0.705 ±0.113
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.528 ±0.002 0.500 ±0.000 0.523 ±0.013 0.500 ±0.000 0.542 ±0.009 0.500 ±0.000
GRAPHEDITOR 0.704 ±0.057 0.488 ±0.024 - - - -
CERTUNLEARN 0.811 ±0.035 0.497 ±0.013 - - - -
GNNDELETE 0.944 ±0.003 0.843 ±0.015 0.937 ±0.004 0.880 ±0.011 0.942 ±0.005 0.824 ±0.021

2.5

RETRAIN 0.966 ±0.002 0.520 ±0.008 0.961 ±0.001 0.520 ±0.012 0.958 ±0.002 0.583 ±0.007
GRADASCENT 0.509 ±0.006 0.509 ±0.007 0.490 ±0.007 0.551 ±0.014 0.639 ±0.077 0.614 ±0.016
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.517 ±0.002 0.500 ±0.000 0.556 ±0.013 0.500 ±0.000 0.547 ±0.009 0.500 ±0.000
GRAPHEDITOR 0.673 ±0.091 0.493 ±0.027 - - - -
CERTUNLEARN 0.781 ±0.042 0.492 ±0.015 - - - -
GNNDELETE 0.925 ±0.006 0.716 ±0.003 0.928 ±0.007 0.738 ±0.005 0.919 ±0.004 0.745 ±0.005

5.0

RETRAIN 0.964 ±0.002 0.525 ±0.008 0.960 ±0.001 0.525 ±0.007 0.958 ±0.002 0.591 ±0.006
GRADASCENT 0.509 ±0.005 0.487 ±0.003 0.489 ±0.015 0.537 ±0.007 0.592 ±0.031 0.583 ±0.013
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.528 ±0.002 0.500 ±0.000 0.517 ±0.013 0.500 ±0.000 0.530 ±0.009 0.500 ±0.000
GRAPHEDITOR 0.587 ±0.014 0.475 ±0.015 - - - -
CERTUNLEARN 0.664 ±0.023 0.457 ±0.021 - - - -
GNNDELETE 0.916 ±0.007 0.680 ±0.006 0.920 ±0.005 0.700 ±0.004 0.900 ±0.005 0.717 ±0.003
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Table 15: Unlearning task: edge deletion when Ed = Ed,OUT. Evaluation: link prediction. Dataset: PubMed.
Reported is AUROC (↑) performance with the best marked in bold and the second best underlined.

Ratio
(%)

Model GCN GAT GIN
Et Ed Et Ed Et Ed

0.5

RETRAIN 0.968 ±0.001 0.687 ±0.023 0.931 ±0.003 0.723 ±0.026 0.941 ±0.004 0.865 ±0.012
GRADASCENT 0.458 ±0.139 0.539 ±0.091 0.450 ±0.017 0.541 ±0.049 0.518 ±0.122 0.528 ±0.021
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.529 ±0.013 0.500 ±0.000 0.542 ±0.004 0.500 ±0.000 0.535 ±0.003 0.500 ±0.000
GRAPHEDITOR 0.732 ±0.043 0.603 ±0.015 - - - -
CERTUNLEARN 0.724 ±0.012 0.597 ±0.029 - - - -
GNNDELETE 0.961 ±0.004 0.973 ±0.005 0.926 ±0.006 0.976 ±0.005 0.940 ±0.005 0.963 ±0.010

2.5

RETRAIN 0.967 ±0.001 0.696 ±0.011 0.930 ±0.003 0.736 ±0.011 0.942 ±0.005 0.875 ±0.008
GRADASCENT 0.446 ±0.130 0.500 ±0.067 0.582 ±0.006 0.758 ±0.033 0.406 ±0.054 0.454 ±0.037
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.505 ±0.024 0.500 ±0.000 0.538 ±0.009 0.500 ±0.000 0.544 ±0.014 0.500 ±0.000
GRAPHEDITOR 0.689 ±0.015 0.570 ±0.011 - - - -
CERTUNLEARN 0.697 ±0.012 0.582 ±0.032 - - - -
GNNDELETE 0.954 ±0.003 0.909 ±0.004 0.920 ±0.004 0.916 ±0.006 0.943 ±0.005 0.938 ±0.009

5.0

RETRAIN 0.966 ±0.001 0.707 ±0.004 0.929 ±0.002 0.744 ±0.008 0.942 ±0.004 0.885 ±0.010
GRADASCENT 0.446 ±0.126 0.492 ±0.064 0.581 ±0.010 0.704 ±0.022 0.388 ±0.056 0.455 ±0.028
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.532 ±0.001 0.500 ±0.000 0.527 ±0.022 0.500 ±0.000 0.524 ±0.015 0.500 ±0.000
GRAPHEDITOR 0.598 ±0.023 0.530 ±0.006 - - - -
CERTUNLEARN 0.643 ±0.031 0.534 ±0.020 - - - -
GNNDELETE 0.950 ±0.003 0.859 ±0.005 0.921 ±0.005 0.863 ±0.006 0.941 ±0.002 0.930 ±0.009

Table 16: Unlearning task: edge deletion when Ed = Ed,IN. Evaluation: link prediction. Dataset: PubMed.
Reported is AUROC (↑) performance with the best marked in bold and the second best underlined.

Ratio
(%)

Model GCN GAT GIN
Et Ed Et Ed Et Ed

0.5

RETRAIN 0.968 ±0.001 0.493 ±0.040 0.931 ±0.003 0.533 ±0.037 0.940 ±0.002 0.626 ±0.041
GRADASCENT 0.469 ±0.095 0.496 ±0.058 0.436 ±0.028 0.553 ±0.029 0.687 ±0.060 0.556 ±0.042
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.547 ±0.004 0.500 ±0.000 0.536 ±0.000 0.500 ±0.000 0.524 ±0.002 0.500 ±0.000
GRAPHEDITOR 0.669 ±0.005 0.469 ±0.021 - - - -
CERTUNLEARN 0.657 ±0.015 0.515 ±0.027 - - - -
GNNDELETE 0.951 ±0.005 0.838 ±0.014 0.909 ±0.003 0.888 ±0.016 0.929 ±0.006 0.835 ±0.006

2.5

RETRAIN 0.968 ±0.001 0.499 ±0.019 0.931 ±0.002 0.541 ±0.013 0.937 ±0.004 0.614 ±0.015
GRADASCENT 0.470 ±0.087 0.474 ±0.039 0.522 ±0.066 0.704 ±0.086 0.631 ±0.050 0.499 ±0.018
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.538 ±0.003 0.500 ±0.000 0.521 ±0.003 0.500 ±0.000 0.533 ±0.010 0.500 ±0.000
GRAPHEDITOR 0.657 ±0.006 0.467 ±0.006 - - - -
CERTUNLEARN 0.622 ±0.009 0.468 ±0.025 - - - -
GNNDELETE 0.920 ±0.014 0.739 ±0.010 0.891 ±0.005 0.759 ±0.012 0.909 ±0.005 0.782 ±0.013

5.0

RETRAIN 0.967 ±0.001 0.503 ±0.009 0.929 ±0.003 0.545 ±0.005 0.936 ±0.005 0.621 ±0.003
GRADASCENT 0.473 ±0.090 0.473 ±0.038 0.525 ±0.069 0.686 ±0.090 0.635 ±0.073 0.493 ±0.018
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.551 ±0.004 0.500 ±0.000 0.524 ±0.020 0.500 ±0.000 0.531 ±0.000 0.500 ±0.000
GRAPHEDITOR 0.556 ±0.007 0.468 ±0.002 - - - -
CERTUNLEARN 0.572 ±0.013 0.477 ±0.028 - - - -
GNNDELETE 0.916 ±0.006 0.691 ±0.012 0.887 ±0.009 0.713 ±0.005 0.895 ±0.004 0.761 ±0.005
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Table 17: Unlearning task: edge deletion when Ed = Ed,OUT. Evaluation: link prediction. Dataset: DBLP.
Reported is AUROC (↑) performance with the best marked in bold and the second best underlined.

Ratio
(%)

Model GCN GAT GIN
Et Ed Et Ed Et Ed

0.5

RETRAIN 0.965 ±0.002 0.783 ±0.018 0.956 ±0.002 0.744 ±0.021 0.934 ±0.003 0.861 ±0.019
GRADASCENT 0.567 ±0.008 0.696 ±0.017 0.501 ±0.030 0.667 ±0.052 0.753 ±0.055 0.789 ±0.091
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.518 ±0.002 0.500 ±0.000 0.523 ±0.013 0.500 ±0.000 0.517 ±0.009 0.500 ±0.000
GRAPHEDITOR 0.790 ±0.032 0.624 ±0.017 - - - -
CERTUNLEARN 0.763 ±0.025 0.604 ±0.022 - - - -
GNNDELETE 0.959 ±0.002 0.964 ±0.005 0.950 ±0.002 0.980 ±0.003 0.924 ±0.006 0.894 ±0.020

2.5

RETRAIN 0.965 ±0.002 0.777 ±0.009 0.955 ±0.003 0.739 ±0.005 0.934 ±0.003 0.858 ±0.002
GRADASCENT 0.528 ±0.015 0.583 ±0.016 0.501 ±0.026 0.576 ±0.017 0.717 ±0.022 0.766 ±0.019
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.515 ±0.002 0.500 ±0.000 0.563 ±0.013 0.500 ±0.000 0.552 ±0.009 0.500 ±0.000
GRAPHEDITOR 0.769 ±0.040 0.607 ±0.017 - - - -
CERTUNLEARN 0.747 ±0.033 0.616 ±0.019 - - - -
GNNDELETE 0.957 ±0.003 0.892 ±0.004 0.949 ±0.003 0.905 ±0.002 0.926 ±0.007 0.898 ±0.017

5.0

RETRAIN 0.964 ±0.003 0.788 ±0.006 0.955 ±0.003 0.748 ±0.008 0.936 ±0.004 0.868 ±0.005
GRADASCENT 0.555 ±0.099 0.591 ±0.065 0.501 ±0.023 0.559 ±0.024 0.672 ±0.032 0.728 ±0.022
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.541 ±0.002 0.500 ±0.000 0.523 ±0.013 0.500 ±0.000 0.522 ±0.009 0.500 ±0.000
GRAPHEDITOR 0.735 ±0.037 0.611 ±0.018 - - - -
CERTUNLEARN 0.721 ±0.033 0.602 ±0.013 - - - -
GNNDELETE 0.956 ±0.004 0.859 ±0.002 0.949 ±0.003 0.859 ±0.005 0.924 ±0.007 0.898 ±0.019

Table 18: Unlearning task: edge deletion when Ed = Ed,IN. Evaluation: link prediction. Dataset: DBLP.
Reported is AUROC (↑) performance with the best marked in bold and the second best underlined.

Ratio
(%)

Model GCN GAT GIN
Et Ed Et Ed Et Ed

0.5

RETRAIN 0.965 ±0.003 0.496 ±0.028 0.957 ±0.002 0.513 ±0.021 0.934 ±0.005 0.571 ±0.035
GRADASCENT 0.556 ±0.018 0.657 ±0.008 0.511 ±0.023 0.612 ±0.107 0.678 ±0.084 0.573 ±0.045
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.515 ±0.001 0.500 ±0.000 0.523 ±0.000 0.500 ±0.000 0.507 ±0.003 0.500 ±0.000
GRAPHEDITOR 0.781 ±0.026 0.479 ±0.017 - - - -
CERTUNLEARN 0.742 ±0.021 0.482 ±0.013 - - - -
GNNDELETE 0.951 ±0.002 0.829 ±0.006 0.928 ±0.004 0.889 ±0.011 0.906 ±0.009 0.736 ±0.012

2.5

RETRAIN 0.964 ±0.003 0.506 ±0.013 0.956 ±0.002 0.525 ±0.012 0.931 ±0.005 0.581 ±0.014
GRADASCENT 0.555 ±0.066 0.594 ±0.063 0.501 ±0.020 0.592 ±0.017 0.700 ±0.025 0.524 ±0.017
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.527 ±0.002 0.500 ±0.000 0.538 ±0.013 0.500 ±0.000 0.517 ±0.009 0.500 ±0.000
GRAPHEDITOR 0.776 ±0.025 0.432 ±0.009 - - - -
CERTUNLEARN 0.718 ±0.032 0.475 ±0.011 - - - -
GNNDELETE 0.934 ±0.002 0.748 ±0.006 0.914 ±0.007 0.774 ±0.015 0.897 ±0.006 0.740 ±0.015

5.0

RETRAIN 0.963 ±0.003 0.504 ±0.006 0.955 ±0.002 0.528 ±0.007 0.931 ±0.006 0.578 ±0.009
GRADASCENT 0.555 ±0.060 0.581 ±0.073 0.490 ±0.022 0.551 ±0.030 0.723 ±0.032 0.516 ±0.042
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.509 ±0.011 0.500 ±0.000 0.511 ±0.006 0.500 ±0.000 0.503 ±0.000 0.500 ±0.000
GRAPHEDITOR 0.736 ±0.023 0.430 ±0.011 - - - -
CERTUNLEARN 0.694 ±0.026 0.441 ±0.008 - - - -
GNNDELETE 0.917 ±0.005 0.713 ±0.007 0.912 ±0.007 0.733 ±0.018 0.864 ±0.005 0.732 ±0.008
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Table 19: Unlearning task: edge deletion when Ed = Ed,OUT. Evaluation: link prediction. Dataset: OGB-
Collab. Reported is AUROC (↑) performance with the best marked in bold and the second best underlined.

Ratio
(%)

Model GCN GAT GIN
Et Ed Et Ed Et Ed

0.5

RETRAIN 0.986 ±0.001 0.553 ±0.004 0.983 ±0.001 0.541 ±0.002 0.859 ±0.011 0.523 ±0.003
GRADASCENT 0.606 ±0.012 0.509 ±0.002 0.674 ±0.016 0.535 ±0.020 0.665 ±0.097 0.511 ±0.009
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.544 ±0.000 0.500 ±0.000 0.551 ±0.004 0.500 ±0.000 0.513 ±0.009 0.500 ±0.000
GRAPHEDITOR 0.857 ±0.010 0.497 ±0.004 - - - -
CERTUNLEARN 0.841 ±0.005 0.478 ±0.006 - - - -
GNNDELETE 0.985 ±0.002 0.723 ±0.002 0.983 ±0.001 0.728 ±0.007 0.977 ±0.004 0.715 ±0.005

2.5

RETRAIN 0.986 ±0.001 0.553 ±0.001 0.983 ±0.001 0.541 ±0.002 0.858 ±0.006 0.525 ±0.002
GRADASCENT 0.531 ±0.047 0.552 ±0.006 0.562 ±0.032 0.543 ±0.003 0.645 ±0.094 0.513 ±0.008
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.517 ±0.000 0.500 ±0.000 0.524 ±0.009 0.500 ±0.000 0.542 ±0.001 0.500 ±0.000
GRAPHEDITOR 0.839 ±0.002 0.465 ±0.002 - - - -
CERTUNLEARN 0.822 ±0.002 0.473 ±0.010 - - - -
GNNDELETE 0.983 ±0.002 0.642 ±0.002 0.983 ±0.000 0.639 ±0.003 0.963 ±0.009 0.647 ±0.007

Table 20: Unlearning task: edge deletion when Ed = Ed,IN. Evaluation: link prediction. Dataset: OGB-
Collab. Reported is AUROC (↑) performance with the best marked in bold and the second best underlined.

Ratio
(%)

Model GCN GAT GIN
Et Ed Et Ed Et Ed

0.5

RETRAIN 0.986 ±0.001 0.521 ±0.002 0.983 ±0.001 0.644 ±0.002 0.855 ±0.007 0.599 ±0.003
GRADASCENT 0.552 ±0.093 0.505 ±0.003 0.559 ±0.154 0.569 ±0.034 0.658 ±0.088 0.524 ±0.014
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.554 ±0.002 0.500 ±0.000 0.512 ±0.003 0.500 ±0.000 0.532 ±0.002 0.500 ±0.000
GRAPHEDITOR 0.840 ±0.002 0.571 ±0.003 - - - -
CERTUNLEARN 0.825 ±0.004 0.583 ±0.005 - - - -
GNNDELETE 0.976 ±0.002 0.715 ±0.002 0.974 ±0.001 0.814 ±0.011 0.935 ±0.005 0.663 ±0.014

2.5

RETRAIN 0.986 ±0.001 0.532 ±0.002 0.982 ±0.001 0.650 ±0.004 0.845 ±0.010 0.612 ±0.003
GRADASCENT 0.577 ±0.005 0.534 ±0.006 0.697 ±0.040 0.541 ±0.018 0.568 ±0.097 0.585 ±0.004
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.539 ±0.001 0.500 ±0.000 0.542 ±0.013 0.500 ±0.000 0.528 ±0.009 0.500 ±0.000
GRAPHEDITOR 0.811 ±0.002 0.575 ±0.001 - - - -
CERTUNLEARN 0.803 ±0.005 0.547 ±0.002 - - - -
GNNDELETE 0.972 ±0.003 0.665 ±0.002 0.966 ±0.005 0.772 ±0.015 0.974 ±0.003 0.675 ±0.010

Table 21: Unlearning task: edge deletion when Ed = Ed,OUT. Evaluation: link prediction. Dataset:
WordNet18. Reported is AUROC (↑) performance with the best marked in bold and the second best underlined.

c Ratio
(%)

Model R-GCN R-GAT
Et Ed Et Ed

0.5

RETRAIN 0.801 ±0.007 0.601 ±0.014 0.898 ±0.003 0.808 ±0.015
GRADASCENT 0.499 ±0.002 0.501 ±0.003 0.495 ±0.001 0.411 ±0.012
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.517 ±0.001 0.511 ±0.003 0.533 ±0.004 0.508 ±0.001
GNNDELETE 0.757 ±0.005 0.901 ±0.008 0.899 ±0.002 0.828 ±0.010

2.5

RETRAIN 0.804 ±0.005 0.639 ±0.004 0.897 ±0.004 0.831 ±0.005
GRADASCENT 0.493 ±0.002 0.489 ±0.005 0.491 ±0.001 0.424 ±0.015
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.515 ±0.004 0.508 ±0.005 0.533 ±0.003 0.505 ±0.004
GNNDELETE 0.758 ±0.005 0.902 ±0.006 0.898 ±0.002 0.836 ±0.005

5.0

RETRAIN 0.801 ±0.004 0.661 ±0.011 0.896 ±0.001 0.861 ±0.006
GRADASCENT 0.493 ±0.001 0.485 ±0.002 0.491 ±0.001 0.425 ±0.025
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.525 ±0.002 0.504 ±0.001 0.531 ±0.004 0.502 ±0.003
GNNDELETE 0.756 ±0.004 0.910 ±0.006 0.897 ±0.002 0.852 ±0.004
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Table 22: Unlearning task: edge deletion when Ed = Ed,IN. Evaluation: link prediction. Dataset:
WordNet18. Reported is AUROC (↑) performance with the best marked in bold and the second best underlined.

Ratio
(%)

Model R-GCN R-GAT
Et Ed Et Ed

0.5

RETRAIN 0.802 ±0.007 0.584 ±0.005 0.898 ±0.002 0.771 ±0.011
GRADASCENT 0.496 ±0.002 0.486 ±0.005 0.493 ±0.001 0.487 ±0.008
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.505 ±0.002 0.510 ±0.001 0.502 ±0.000 0.502 ±0.000
GNNDELETE 0.756 ±0.005 0.850 ±0.005 0.897 ±0.002 0.819 ±0.014

2.5

RETRAIN 0.800 ±0.005 0.580 ±0.006 0.891 ±0.005 0.783 ±0.009
GRADASCENT 0.490 ±0.001 0.477 ±0.006 0.490 ±0.001 0.492 ±0.003
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.512 ±0.003 0.509 ±0.004 0.545 ±0.015 0.509 ±0.005
GNNDELETE 0.751 ±0.006 0.845 ±0.007 0.893 ±0.002 0.786 ±0.004

5.0

RETRAIN 0.797 ±0.003 0.588 ±0.005 0.883 ±0.002 0.786 ±0.005
GRADASCENT 0.491 ±0.001 0.480 ±0.004 0.490 ±0.002 0.494 ±0.002
D2D 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000 0.500 ±0.000
GRAPHERASER 0.507 ±0.003 0.511 ±0.005 0.518 ±0.002 0.504 ±0.004
GNNDELETE 0.749 ±0.005 0.850 ±0.008 0.889 ±0.002 0.779 ±0.007
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