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Abstract

Nonlinear acceleration methods are powerful techniques to speed up fixed-point
iterations. However, many acceleration methods require storing a large number of
previous iterates and this can become impractical if computational resources are
limited. In this paper, we propose a nonlinear Truncated Generalized Conjugate
Residual method (nlTGCR) whose goal is to exploit the symmetry of the Hessian
to reduce memory usage. The proposed method can be interpreted as either an
inexact Newton or a quasi-Newton method. We show that, with the help of global
strategies like residual check techniques, nlTGCR can converge globally for general
nonlinear problems and that under mild conditions, nlTGCR is able to achieve
superlinear convergence. We further analyze the convergence of nlTGCR in a
stochastic setting. Numerical results demonstrate the superiority of nlTGCR when
compared with several other competitive baseline approaches on a few problems.
Our code will be available in the future.

1 Introduction

In this paper, we consider solving the fixed-point problem:

Find x ∈ Rn such that x = H(x). (1)

This problem has received a surge of interest due to its wide range of applications in mathematics,
computational science and engineering. Most optimization algorithms are iterative, and their goal is
to find a related fixed-point of the form (1), where H : Rn → Rn is the iteration mapping which can
potentially be nonsmooth or noncontractive. When the optimization problem is convex, H is typically
nonexpansive, and the solution set of the fixed-point problem is the same as that of the original
optimization problem, or closely related to it. Consider the simple fixed-point iteration xk+1 = H(xk)
which produces a sequence of iterates {x0, x1, · · · , xK}. When the iteration converges, its limit is a
fixed-point, i.e., x∗ = H(x∗). However, an issue with fixed-point iteration is that it does not always
converge, and when it does, it might reach the limit very slowly.

To address this issue, a number of acceleration methods have been proposed and studied over the years,
such as the reduced-rank extrapolation (RRE) [58], minimal-polynomial extrapolation (MPE) [12],
modified MPE (MMPE) [33], and the vector ε-algorithms [8]. Besides these algorithms, Anderson
Acceleration (AA) [1] has received enormous recent attention due to its nice properties and its success
in machine learnin applications [56, 22, 57, 14, 60, 44, 25, 63]. In practice, since computing the
Hessian of the objective function is commonly difficult or even unavailable, AA can be seen as a
practical alternative to Newton’s method [34]. Also, compared with the classical iterative methods
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such as the nonlinear conjugate gradient (CG) method [24], no line-search or trust-region technique is
performed in AA, and this is a big advantage in large-scale unconstrained optimization. Empirically,
it is observed that AA is quite successful in accelerating convergence. We refer readers to [9] for a
recent survey of acceleration methods.

However, classical AA has one undesirable disadvantage in that it is expensive in terms of memory
as well as computational cost, especially in a nonconvex stochastic setting, where only sublinear
convergence can be expected when only stochastic gradients can be accessed [3]. In light of this, a
number of variants of AA have been proposed which aim at improving its performance and robustness
(e.g., [39, 63, 62, 56, 67]). The above-cited works focus on improving the convergence behavior of
AA, but they do not consider reducing the memory cost. In machine learning, we often encounter
practical situations where the number of parameters is quite large and for this reason, it is not practical
to use a large number of vectors in the acceleration methods. It is not clear whether or not the
symmetric structure of the Hessian can be exploited in a scheme like AA to reduce the memory cost
while still maintaining the convergence guarantees. In this paper, we will demonstrate how this can
be accomplished with a new algorithm that is superior to AA in practice.

Our contributions. This paper develops a nonlinear acceleration method, nonlinear Truncated
Generalized Conjugate Residual method (nlTGCR), that takes advantage of symmetry. This work is
motivated by the observation that the Hessian of a nonlinear function, or the Jacobian of a gradient
of a mapping, f is symmetric and therefore more effective, conjugate gradient-like schemes can be
exploited.

We demonstrate that nonlinear acceleration methods can benefit from the symmetry property of the
Hessian. In particular, we study both linear and nonlinear problems and give a systematic analysis of
TGCR and nlTGCR. We show that TGCR is efficient and optimal for linear problems. By viewing
the method from the angle of an inexact Newton approach, we also show that adding a few global
convergence strategies ensures that nlTGCR can achieve global convergence guarantees.

We complement our theoretical results with numerical simulations on several different problems. The
experimental results demonstrate advantages of our methods. To the best of our knowledge, this
is still the first work to investigate and improve the AA dynamics by exploiting symmetry of the
Hessian.

Related work. Designing efficient optimization methods has received much attention. Several recent
works [65, 4, 40, 48, 18] consider second order optimization methods that employ sketching or
approximation techniques. Different from these approaches, our method is a first-order method that
utilizes symmetry of the Hessian instead of constructing it. A variant of inexact Newton method was
proposed in [47] where the least-squares sub-problems are solved approximately using Minimum
Residual method. Similarly, a new type of quasi Newton symmetric update [54] uses several secant
equations in a least-squares sense. These approaches have the same goal as ours. However, they are
more closely related to a secant or a multi-secant technique, and as will be argued it does a better
job of capturing the nonlinearity of the problem. [63] proposed a short-term AA algorithm that is
different from ours because it is still based on the parameter sequence instead of the gradient sequence
and does not exploit symmetry of the Hessian.

2 Background

2.1 Extrapolation, acceleration, and the Anderson Acceleration procedure

Consider a general fixed-point problem and the associated fixed-point iteration as shown in (1). Denote
by rj = H(xj)−xj the residual vector at the jth iteration. Classical extrapolation methods including
RRE, MPE and the vector ε-Algorithm, have been designed to accelerate the convergence of the
original sequence by generating a new and independent sequence of the form: t(k)

j =
∑k
i=0 αixj+i.

An important characteristic of these classical extrapolation methods is that the two sequences are not
mixed in the sense that no accelerated item t

(k)
j , is used to produce the iterate xj . These extrapolation

methods must be distinguished from acceleration methods such as the AA procedure which aim at
generating their own sequences to find a fixed point of a certain mapping H .

AA was originally designed to solve a system of nonlinear equations written in the form F (x) =
H(x) − x = 0 [1, 61, 41, 30]. Denote Fi = F (xi). AA starts with an initial x0 and sets x1 =
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H(x0) = x0 + βF0, where β > 0 is a parameter. At step j > 1 we define Xj = [xj−m, . . . , xj−1],
and F̄j = [Fj−m, . . . , Fj−1] along with the differences:

Xj = [∆xj−m · · · ∆xj−1] ∈ Rn×m,
Fj = [∆Fj−m · · · ∆Fj−1] ∈ Rn×m.

(2)

We then define the next AA iterate as follows:

xj+1 = xj + βFj − (Xj + βFj) θ(j) where: (3)

θ(j) = argminθ∈Rm‖Fj −Fj θ‖2. (4)

To define the next iterate in (3) the algorithm uses the term Fj+1 = F (xj+1) where xj+1 is the current
accelerated iterate. AA belongs to the class of multi-secant methods. Indeed, the approximation (3)
can be written as:

xj+1 = xj − [−βI + (Xj + βFj)(FTj Fj)−1FTj ]Fj

≡ xj −GjFj .
(5)

Thus, Gj can be seen as an update to the (approximate) inverse Jacobian Gj−m = −βI

Gj = Gj−m + (Xj −Gj−mFj)(FTj Fj)−1FTj , (6)

and is the minimizer of ‖Gj + βI‖F under the multi-secant condition of type II 1

GjFj = Xj . (7)

This link between AA and Broyden multi-secant type updates was first unraveled by Eyert [21] and
expanded upon in [46].

2.2 Inexact and quasi-Newton methods

Given a nonlinear system of equations F (x) = 0. Inexact Newton methods [15, 10], start with an
initial guess x0 and compute a sequence of iterates as follows

Solve J(xj)δj ≈ −F (xj) (8)
Set xj+1 = xj + δj (9)

Here, J(xj) is the Jacobian of F at the current iterate xj . In (8) the system is solved inexactly,
typically by some iterative method. In quasi-Newton methods [17, 17, 54], the inverse of the Jacobian
is approximated progressively. Because it is the inverse Jacobian that is approximated, the method
is akin to Broyden’s second (or type-II) update method. This method replaces Newtons’s iteration:
xj+1 = xj −DF (xj)

−1
F (xj) with xj+1 = xj −GjF (xj) where Gj approximates the inverse of

the Jacobian DF (xj) at xj by the update formula Gj+1 = Gj + (∆xj −Gj∆F (xj))v
T
j in which

vj is defined in different ways see [46] for details.

3 Exploiting symmetry

In the following, we specifically consider the case where the nonlinear mapping F is the gradient of
some objective function φ : Rn → R to be minimized, i.e.,

F (x) = ∇φ(x).

In this situation, the Jacobian of F becomes ∇2φ the Hessian of φ. An obvious observation here
is that the symmetry of the Hessian is not taken into account in the approximate inverse Hessian
update formula (6). This has only been considered in the literature (very) recently (e.g., [6, 55, 7]).
In a 1983 report, [53] showed that the matrix Gj obtained by a multi-secant method that satisfies the
secant condition (7) is symmetric iff the matrix X Tj Fj is symmetric. It is possible to explicitly force
symmetry by employing generalizations of the symmetric versions of Broyden-type methods. Thus,
the authors of [6, 7] developed a multisecant version of the Powell Symmetric Broyden (PSB) update

1Type I Broyden conditions involve approximations to the Jacobian, while type II conditions deal with the
inverse Jacobian.
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due to Powell [45] while the article [55] proposed a symmetric multisecant method based on the
popular Broyden-Fletcher-Goldfarb-Shanno (BFGS) approach as well as the Davidon-Fletcher-Powell
(DFP) update. However, there are a number of issues with the symmetric versions of multisecant
updates, some of which are discussed in [55].

We observe that when we are close to the limit, the condition X Tj Fj = FTj Xj is nearly satisfied.
This is because if x∗ is the limit with F (x∗) = 0 we can write

F (xk)− F (xk−1) = [F (xk)− F (x∗)]

− [F (xk−1)− F (x∗)]

≈ ∇2φ(x∗)(xk − xk−1).

(10)

This translates to Fj ≈ ∇2φ(x∗)Xj from which it follows that X Tj Fj ≈ X Tj ∇2φ(x∗)Xj which
is a symmetric matrix under mild smoothness conditions on φ. Therefore, the issue of symmetry
can be mitigated if we are able to develop nonlinear acceleration methods that take advantage of
near-symmetry.

3.1 The linear case: Truncated GCR (TGCR)

We first consider solving the linear system Ax = b with a general matrix A. The Generalized
Conjugate Residual (GCR) algorithm, see, e.g., [19, 51], solves this linear system by building a
sequence of search directions pi, for i = 0, · · · , j at step j so that the vectors Api are orthogonal to
each other. With this property it is easy to generate iterates that minimize the residual at each step,
and this leads to GCR, see [51, pp 195-196] for details.

Next we will make two changes to GCR. First, we will develop a truncated version in which any
given Apj is orthogonal to the previous m Api’s only. This is dictated by practical considerations,
because keeping all Api vectors may otherwise require too much memory. Second, we will keep a
set of vectors for the pi’s and another set for the vectors vi ≡ Api, for i = 1, · · · , j at step j in order
to avoid unnecessary additional products of the matrix A with vectors. The Truncated GCR (TGCR)
is summarized in Algorithm 1.

Algorithm 1 TGCR (m)

1: Input: Matrix A, RHS b, initial x0.
2: Set r0 ≡ b−Ax0; v = Ar0;
3: v0 = v/‖v‖; p0 = r0/‖v‖;
4: for j = 0, 1, 2, · · · , Until convergence do
5: αj = (rj , vj)
6: xj+1 = xj + αjpj
7: rj+1 = rj − αjvj
8: p = rj+1; v = Ap;
9: i0 = max(1, j −m+ 1)

10: for i = i0 : j do
11: βij := (v,Api)
12: p := p− βijpi;
13: v := v − βijvi;
14: end for
15: pj+1 := p/‖v‖ ; vj+1 := v/‖v‖ ;
16: end for

With m =∞ we obtain the non-restarted GCR method, which is equivalent to the non-restarted (i.e.,
full) GMRES. However, when A is symmetric, but not necessarily symmetric positive definite, then
TGCR (1) is identical with TGCR (m) in exact arithmetic. This leads to big savings both in terms of
memory and in computational costs.
Theorem 3.1. When the coefficient matrix A is symmetric, TGCR (m) generates the same iterates
as TGCR (1) for any m > 0. In addition, when A is positive definite, the k-th residual vector
rk = b−Axk satisfies the following inequality where κ is the spectral condition number of A:

‖rk‖ ≤ 2

[√
κ− 1√
κ+ 1

]k
‖r0‖. (11)
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3.2 The nonlinear case: nlTGCR

Assume now that we want to solve the nonlinear problem F (x) = 0. We need to make three major
changes to Algorithm 1. First, any residual is now the negative of F (x) so Line 2 and Line 7 must be
replaced by r0 = −F (x0) and rj+1 = −F (xj+1), respectively. In addition, we originally need to
calculate the products Ar0 and Ap in Line 2 and Line 8 respectively. Here A needs to be replaced
by the Jacobian J(xj) of F at the current iterate. We also use the notation Pj ≡ [pi0 , · · · , pj ], and
Vj ≡ [J(xi0)pi0 , · · · , J(xj)pj ]. The most important change is in lines 5-6 where αj of Algorithm 1
needs to be replaced by a vector yj . This is because when we write the linear model used in the form
of an inexact Newton method:

F (xj + Pjy) ≈ F (xj) + [J ]Pjy where
[J ]Pj ≡ [J(xi0)pi0 , · · · , J(xj)pj ] = Vj .

(12)

The projection method that minimizes the norm ‖F (xj)+[J ]Pjy‖ = ‖F (xj)+Vjy‖ of the right-hand
side determines y in such a way that

F (xj) + Vjy ⊥ Span{Vj} → (Vj)
T [F (xj) + Vjy] = 0

→ y = V Tj rj
(13)

where it is assumed the vi’s are fully orthogonal. Note that in the linear case, it can be shown
that V Tj rj has only one nonzero component when one assumes that the vectors J(xi)pi are fully
orthogonal, i.e., that i0 = 1 always. The nonlinear version of TGCR (m) is summarized in Algorithm
2 where the indication ‘Use Frechet’ means that the vector v = J(x)u is to be computed as
v = (F (x+ εu)− F (x))/ε for some small ε.

Algorithm 2 nlTGCR (m)

1: Input: F (x), initial x0.
2: Set r0 = −F (x0).
3: Compute v = J(x0)r0; (Use Frechet)
4: v0 = v/‖v‖, p0 = r0/‖v‖;
5: for j = 0, 1, 2, · · · , Until convergence do
6: yj = V Tj rj
7: xj+1 = xj + Pjyj
8: rj+1 = −F (xj+1)
9: Set: p := rj+1;

10: i0 = max(1, j −m+ 1)
11: Compute v = J(xj+1)p (Use Frechet)
12: for i = i0 : j do
13: βij := (v, vi)
14: p := p− βijpi
15: v := v − βijvi
16: end for
17: pj+1 := p/‖v‖ ; vj+1 := v/‖v‖ ;
18: end for

Remark. nlTGCR (m) requires 2 function evaluations per step: one in Line 8 and the other in
Line 11. In the situation when computing the Jacobian is inexpensive, then one can compute Jp in
Line 11 as a matrix-vector product and this will reduce the number of function evaluations per step
from 2 to 1. The inner loop in Line 12-16 corresponds to exploiting symmetry of Hessian. At a given
step, nlTGCR (m) attempts to approximate a Newton step: xj+1 = xj + δ where δ is an approximate
solution to J(xj)δ + F (xj) = 0.

High-Level Clarification. At this point, one might ask the question: why not just use an inexact
Newton method whereby the Jacobian system is solved with the linear GCR or TGCR method?
This is where AA provides an interesting insight on some weaknesses of Newton-Krylov method. A
Newton-Krylov method generates a Krylov subspace Span{r0, Jr0, · · · , Jkr0} at a current iterate
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– say K = x0 – (so J ≡ J(x0) ≡ DF (x0)) and tries to minimize F (x0 + δ) where δ ∈ K, by
exploiting the linear model: F (x0 + δ) ≈ F (x0) + Jδ. If we generate a basis V = [v1, · · · vk] of
K and express δ as δ = V y then we would need to minimize ‖F (x0) + JV y‖ which is a small
least-squares problem. One usually adds to this a global convergence strategy, e.g., a linesearch or
a trust-region technique to produce the next iterate x1. The problem with this approach is this: the
approximate solution obtained after k steps of a Krylov subspace approach is based on the Jacobian
at the initial point x0. The intermediate calculation is entirely linear and based on J(x0). It is not
exploited in any way to produce intermediate (nonlinear) iterates which in turn could be used to
produce more accurate information on some local Jacobian. In contrast, a method like AA (or in
fact any of the secant or multisecant methods) will do just this, i.e., it will use information on the
nonlinear mapping near the most recent approximation to produce the new iterate. This distinction is
rather important although if the problem is nearly linear, then it could make little difference.

In nlTGCR , we try to improve on the Newton-Krylov approach, since our starting point is TGCR
which is generalized to nonlinear problems. We also take the viewpoint of improving on AA or
multisecant methods by not relying on the approximation F (xj+1) − F (xj) ≈ J(xj+1 − xj)
mentioned above. This is achieved by adopting the projection viewpoint. Instead of minimizing
‖F (x0) + JPy‖ as in the inexact Newton mode, we would like to now minimize ‖F (xk) + JPy‖
where xk is the most recent iterate. This initial idea leads to difficulty since there is not one but
several J at previous points and a single one of them will not be satisfactory. Thus, we have a few
directions pi just like the differences ∆xi in Anderson, but now each pi will lead to a J(xi)pi which
- unlike in AA - is accurately computed and then saved. This feature is what we believe makes a
difference in the performance of the algorithm, although this is something that is rather difficult to
prove theoretically. We leave it as future work. Overall, the method described in this paper mixes
a number of ideas coming from different horizons. A further high-level discussion and detailed
complexity analysis are provided in Appendix A.

Next, we analyze two possible versions of nlTGCR in the next two sections. In what follows we
assume that all the Jpi’s are computed exactly.

3.2.1 Linearized update version

First, we consider a variant of Algorithm 2 which we call the “linearized update version” – whereby
in Line 8 we update the residual by using the linear model, namely, we replace Line 8 by its linear
analogue: 8a: rj+1 = rj−Vjyj . In addition, the matrix-vector product in Line 11 is performed with
J(x0) instead of J(xj+1). When F is linear, it turns out that yj has only one nonzero component,
namely the last one and this will yield the standard truncated GCR algorithm. Assume that we perform
k steps of the algorithm to produce xk, i.e., that Line 5 is replaced by “for j = 0, 1, 2, · · · , k do”.
Then the algorithm is exactly equivalent to an inexact Newton method in which GMRES (or GCR) is
invoked to solve the Jacobian linear system [10]. Indeed, in this situation Lines 4-15 of Algorithm 1
and Lines 5-17 of Algorithm 2 are identical. In other words, in Lines 5-17, Algorithm 2 performs k
steps of the GCR algorithm for approximately solving the linear systems J(x0)δ = −F (x0). Note
that while the update is written in progressive form as xj+1 = xj + αjpj , the right-hand side does
not change during the algorithm and it is equal to r0 = −F (x0). In effect xk is updated from x0 by
adding a vector from the span of Pk. See the related global convergence result shown in Theorem
B.7 in the Appendix, for a version of this algorithm that includes a line-search. A weakness of this
linear update version is that the Jacobian is not evaluated at the most recent update but at x0, which
in practice is the iterate at each restart.

3.2.2 Non-linear update version with residual check

Next we consider the ‘nonlinear-update version’ as described in Algorithm 2. This version explicitly
enforces the linear optimality condition of GCR, as represented by the Equation (13). In this section,
we will analyze the convergence of nlTGCR through the function φ(x) = 1

2‖F (x)‖2.

In order to prove the global convergence of nlTGCR, we need to make a small modification to
Algorithm 2 because as implemented in Algorithm 2 Pj is fixed and the solution obtained at this step
may not necessarily satisfy the following residual check condition which is often used in inexact
Newton methods [15, 11, 20] to guarantee the global convergence:

‖F (xj) + [J ]Pjy‖ ≤ η‖F (xj)‖, (14)
where η < 1 is a parameter.
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The residual norm on the left-hand side of (14) is readily available at no additional cost and this can
help devise globally converging strategies, by monitoring to what extent (14) is satisfied. If (14) is not
satisfied, we can either use a line-search technique 4 or restart the process and take the next iterate as
the output of the fixed point iteration mapping H . When the residual check condition is implemented
after Line 8 in Algorithm 2, we can prove the global convergence of nlTGCR in the next theorem.
Similar global strategies have also been proposed in [68, 49, 23, 64, 59, 43].
Theorem 3.2 (Global convergence of nlTGCR with residual check). Assume φ is twice differentiable
and F (x) is L-lipschitz. If the residual check is satisfied ‖J(xn)Pnyn + F (xn)‖ ≤ ηn‖F (xn)‖
where 0 ≤ ηn ≤ η < 1 and J(xn) is non-singular and its norm is bounded from above for all n,
then Pnyn produced in line 7 of Algorithm 2 is a descent direction and the iterates xn produced by
Algorithm 2will converge to the minimizer x∗:

lim
n→∞

φ(xn) = φ(x∗) = 0.

In the next theorem, we prove that nlTGCR can achieve superlinear and quadratic convergence under
mild conditions.
Theorem 3.3 (Superlinear and quadratic convergence of nlTGCR ). With the same setting as Theorem
3.2. Assume ∇2φ is L-lipschitz. Consider a sequence generated by Algorithm 2 such that residual
check is satisfied ‖J(xn)Pnyn + F (xn)‖ ≤ ηn‖F (xn)‖ where 0 ≤ ηn ≤ η < 1. Moreover, if the
following conditions hold

φ(xn + Pnyn) ≤ φ(xn) + α∇φ(xn)TPnyn

φ(xn + Pnyn) ≥ φ(xn) + β∇φ(xn)TPnyn

for α < 1
2 and β > 1

2 . Then there exists a Ns such that xn → x∗ superlinearly for n ≥ Ns if
ηn → 0, as n→∞. Moreover, if ηn = O(‖F (xn)‖2), the convergence is quadratic.

If the property of the function is bad (non-expansive/non-convex), it will be more difficult to satisfy
the assumptions of Theorem 3.2 and 3.3. For example, in Theorem 3.2, the non-singularity and
boundedness is required for J(x). If the function does not satisfy the assumption, say, degenerate at
a point, then the algorithm may not converge to a stationary point.
Remark. This superlinear(quadratic) convergence of nlTGCR does not contradict with the linear
convergence of TGCR shown in 3.1. 3.1 is obtained from the equivalence between TGCR and CG in
that short-term recurrence holds for symmetric matrix. Like CG, TGCR can still have a superlinear
convergence rate. In practice, the second stage of convergence of Krylov Space methods is typically
well defined by the theoretical convergence bound with

√
κ(A) but may be super-linear, depending

on a distribution of the spectrum of the matrix A and the spectral distribution of the error.

Finally, we analyze the convergence of nlTGCR when the gradient F is subsampled. In the analysis,
we make the following five assumptions.

Assumptions for stochastic setting A1 : The variance of subsampled gradients is uniformly
bounded by a constant C, tr(Cov(F (x))) ≤ C2, ∀x.

A2 : The eigenvalues of the Hessian matrix for any sample |H| = β is bounded from below and
above in Loewner order µβI � J(x,H) � LβI . Further more, we require there is uniform lower and
upper bound for all subsmaples. That is, there exists µ̂ and L̂ such that 0 ≤ µ̂ ≤ µβ and Lβ ≤
L̂ <∞, ∀β ∈ N. And the full Hessian is bounded below and above µI � J(x) � LI, ∀x.
A3 : Hessian is M-Lipschitz, that is ‖J(x)− J(y)‖ ≤M‖x− y‖, ∀x, y
A4 :The variance of subsampled Hessian is bounded by a constant σ.

‖EH[(J(x;H)− J(x))]‖ ≤ σ, ∀x (15)

A5 : There exists a constant γ such that E[‖xn − x∗‖2] ≤ γ(E[‖xn − x∗‖])2.

Theorem 3.4 (Convergence of stochastic version of nlTGCR ). Assume |Hn| = β ≥ 16σ2

µ , ∀n,
residual check is satisfied for ηn ≤ η ≤ 1

4L and assumptions A1−A5 hold. The iterates generated
by the stochastic version Algorithm 2 converge to x∗ if ‖xk − x∗‖ ≤ µ

2Mγ and

E‖xn+1 − x∗‖ ≤
3

4
E‖xn − x∗‖. (16)
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3.3 Connections with other methods

This section explores the connection between nlTGCR with inexact Newton and AA. We provide the
connection between nlTGCR and quasi-Newton in A.1.

1) The inexact Newton viewpoint. Inexact Newton methods minimize ‖F (x0) + J(x0)Pjy‖ over
y by using some iterative method and enforcing a condition like

‖F (x0) + J(x0)Pjy‖ ≤ η‖F (x0)‖

where η < 1 is a parameter, see, e.g., [15, 10, 11, 20]. In nlTGCR, we are trying to solve a similar
equation

F (xj) + J(xj)δ = 0

by minimizing ‖F (xj) + [J ]Pjy‖. We can prove the following properties of nlTGCR.
Proposition 1. As defined in Algorithm 2, δj = xj+1 − xj = Pyj minimizes ‖F (xj) + δ‖ over
vectors of the form δ = Vjy, where y ∈ Rnj and nj = j − i0 + 1.

As noted earlier, in the linear case, the vector yj has only one nonzero component, namely the
top one. In the general case, it is often observed that the other components are not zero but small.
Let us then suppose that we replace the update in Lines 6-7 by the simpler form: µj = vTj rj , and
xj+1 = xj + µjpj . Then the direction δj = xj+1 − xj is a descent direction for 1

2‖F (x)‖2.

Proposition 2. Assume that J(xj) is nonsingular and that µj ≡ vTj rj 6= 0. Then δj = µjpj is a
descent direction for the function 1

2‖F (x)‖2 at xj .

2) The quasi-Newton viewpoint. It is also possible to view the algorithm from the alternative angle
of a quasi-Newton approach instead of inexact Newton. In nlTGCR, the approximate inverse Jacobian
Gj at step j is equal to

Gj = PjV
T
j . (17)

If we apply this to the vector vj we get Gjvj = PjV
T
j vj = pj = J(xj)

−1
vj . So Gj inverts J(xj)

exactly when applied to vj . It therefore satisfies the secant equation ([46, sec. 2.3])

Gjvj = pj . (18)

This is equivalent to the secant condition Gj∆fj = ∆xj used in Broyden’s second update method.

In addition, the update Gj satisfies the ‘no-change’ condition:

Gjq = 0 ∀q ⊥ vj . (19)

The usual no-change condition for secant methods is of the form (Gj −Gj−m)q = 0 for q ⊥ ∆fj
which in our case would be (Gj −Gj−m)q = 0 for q ⊥ vj . One can therefore consider that we are
updating Gj−m ≡ 0. In this sense, we can prove the optimality of nlTGCR(m).
Theorem 3.5 (Optimality of nlTGCR). The matrixGj in (24) is the best approximation to the inverse
Jacobian J(xj)

−1 of F (x) at xj among all the matrices G whose range Range(G) = Span{Vj} and
satisfies the multisecant equation Equation GVj = Pj . That is,

Gj = arg min
{G∈Rd×d|Range(G)=Span{Vj},GVj=Pj}

‖GJ(xi)− I‖. (20)

3) Comparison with Anderson Acceleration. Let us set β = 0 in Anderson Acceleration. Without
loss of generality and in an effort to simplify notation we also assume that i0 = 1 each time.
According to (3–4), the j-th iterate becomes simply xj+1 = xj − Fjθj where θj is a vector that
minimizes ‖Fj −Fjθ‖. For nlTGCR , we have xj+1 = xj + Pjyj where yj minimizes ‖Fj + Vjy‖.
So this is identical with Equation (3) when β = 0 in which Pj ≡ Xj , and Fj is replaced by Vj .

The most important relation for both cases is the multi-secant relation. For Anderson, withGj−m = 0,
the multi-secant matrix in (6) becomes

Gj = Xj(FTj Fj)−1FTj (21)

which can be easily seen to minimizes ‖G‖F for matrices G that satisfy the multisecant condition
GFj = Xj and the no-change condition GTj (Gj −G) = 0. Therefore the two methods differ mainly
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in the way in which the sets Fj/Vj , and Xj/Pj are defined. Let us use the more general notation
Vj , Pj for the pair of subspaces.

In both cases, a vector vj is related to the corresponding pj by the fact that vj ≈ J(xj)pj . In the
case of nlTGCR this relation is explicitly enforced by a Frechet differentiation (Line 10)– before we
perform an orthogonalization - which combines this vector with others – without changing the span
of the new Pj (and also Vj).

In the case of AA, we have vj = ∆Fj−1 = Fj − Fj−1 and the relation exploited is that

fj ≈ Fj−1 + J(xj−1)(xj − xj−1)→ ∆fj−1

≈ J(xj−1)∆xj−1
(22)

However, the approximation vj ≈ J(xj)pj in nlTGCR is more accurate- because we use an
additional function evaluation to explicitly obtain a more accurate approximation (ideally exact value)
for J(xj)pj . In contrast when xj and xj−1 are not close, then (22) can be a very rough approximation.
This is a key difference between the two methods.

4 Experimental Results

This section compares our proposed algorithms TGCR and nlTGCR to existing methods in the
literature with the help of a few experiments. We first compare the convergence for linear problems
and then for a softmax classification problem in the case where the gradients are either deterministic
or stochastic. More experiments and experimental details are available in the Appendix C.

4.1 Linear Problems

We first compare the performance on linear equations Ax = b with Conjugate Gradient [29],
generalized minimal residual method (GMRES) [52] and Anderson Acceleration under different
settings.

Linear Systems. The advantages of TGCR for linear systems are two-folds. 1:) Theorem 3.1
shows that TGCR (1) is already optimal (equivalent to Conjugate Residual) when A is symmetric
positive definite. A larger table size is unnecessary while AA and GMRES require more past iterates
to converge fast. It can be observed from Figure 1a and 1b that TGCR (1) requires much less
memory and computation overhead to converge compared to GMRES and AA. It also has the same
convergence behavior and similar running time as CG. 2:) It is easy to show that TGCR can converge
for indefinite systems while CG fails. Figure 1c verifies our point. This can be helpful when it is not
known in advance if the system is indefinite. The numerical results shown in Figure 1 demonstrate the
power of TGCR as a variant of Krylov subspace methods. Figure 1 clearly verifies the correctness
of Theorem 3.1 that TGCR (1) is identical with TGCR (m) in exact arithmetic, which leads to big
savings both in terms of memory and in computational costs. We include more experimental results
in the Appendix C.2.

4.2 Nonlinear Problems: Softmax Classification

Next, we consider a softmax multi-class classification problem shown in (79) without regularization.

f = −1

s

s∑
i=1

log

 e
wTyj

x(i)∑k
j=1 e

wTj x
(i)

 , (23)

where s is the total number of sample, k is the total number of classes, x(i) is vector of all features of
sample i, wj is the weights for the jth class, and yj is the correct class for the ith sample. We compare
nlTGCR with Gradient Descent (GD), Nonlinear Conjugate Gradient (NCG) [13], L-BFGS [38] and
Anderson Acceleration using the MNIST dataset [16] and report results in Figure 2. Figure 2a and 2b
plot the objective value vs. iteration number and wall-clock time respectively. It can be seen that
nlTGCR converges significantly faster than baselines even without a line-search strategy. In addition,
for this convex and symmetric problem, it is not surprising to observe that nlTGCR(1) exhibits a
similar convergence rate with nlTGCR(m), which saves even more memory and computation time.
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(a) A is SPD (b) Time comparison (1a) (c) A is symmetric indefinite

Figure 1: Linear Systems Ax = b,A ∈ R1000×1000: 1a: Comparison in terms of iteration,
TGCR [m, mv] means table size= m and moving window (no restart). 1b: Comparison in terms of
time for problem in 1a. 1c: Indefinite System. It is well known that CG fails for indefinite systems.
The gap between full GMRES and TGCR is due to the numerical issue. It can be concluded that
TGCR is ideal for solving linear systems because of its nice convergence property (compared to CG
and AA) as well as the memory-efficient design (compared to GMRES).

(a) Function Value (b) Time Comparison (c) Test Accuracy (d) Stochastic Gradients

Figure 2: Softmax Classification (MNIST Dataset): 2a: Function Value vs. Iterations; 2b: Function
Value vs. Time; 2c: Test Accuracy vs. Iterations. 2d: Function Value vs. Iterations Stochastic
gradients are calculated using a batch size of 500.

Figure 2c shows that nlTGCR greatly outperforms baselines by achieving high test accuracy in the
very early stage of training. Figure 2d shows the effectiveness of our method in the stochastic setting.
‘S-’ stands for a stochastic version. We use a step size of 0.2 for SGD and a batch size (B) of 500 for
all stochastic algorithms. It can be observed that nlTGCR(1) with a small batch size is comparable
with the full batch GD with line-search, which confirms that TGCR takes advantage of symmetry in
a very effective way even in the case of stochastic gradients.

4.3 Deep learning applications

We then evaluate nlTCGR on several widely-used deep learning applications using different frame-
works. We run experiments on image classification using CNN [42] and ResNet [27], time series
forecasting using LSTM [31], and node classification using GCN [35]. Due to space limitation, we
provide full results in Appendix C.5. It shows that nlTGCR(1) outperforms baselines (SGD, Nesterov,
and Adam) for the above DL experiments, highlighting its effectiveness in large-scale and stochastic
non-convex optimization.

5 Conclusion

This paper describes an efficient nonlinear acceleration method that takes advantage of the symmetry
of the Hessian. We studied the convergence properties of the proposed method and established a few
connections with existing methods. The numerical results suggest that nlTGCR can be a competitive
iterative algorithm from both theoretical and practical perspectives. We plan to conduct a more
detailed theoretical and experimental investigation of the method for a nonconvex stochastic setting.

Social Impact. This work does not present any foreseeable societal consequence.
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Appendix A Additional Discussion

A.1 High-Level Clarification

The method described in this paper mixes a number of ideas coming from different horizons. Some
of the high-level discussion provided below is expanding further in later sections.

Linear case: TGCR. Our initial idea was motivated by considering the linear case, in an attempt to
exploit Conjugate-gradient like methods for solving a linear system Ax = b. When A is symmetric,
it is known that it is possible to minimize the objective function f(x) = ‖b − Ax‖22 on the k-th
Krylov subspace Span{r0, Ar0, · · · , Ak−1r0} by a nice algorithm that uses a short-term recurrence.
This algorithm, called the Conjugate Residual algorithm, is quite similar to the Conjugate Gradient
but its residual vectors are conjugate (instead of being orthogonal) and its search directions are
ATA− conjugate (instead of being A-conjugate). Its generalization to the nonsymmetric case, called
the Generalized Conjugate Residual method, is easy to obtain by enforcing these two properties.
Enforcing the ATA conjugacy of the pi’s is the same as enforcing the orthogonality of the vectors
Api and this is expensive when we have many vectors. For this reason, practical versions of the
algorithm are truncated, i.e., the orthogonalization is enforced against only a few previous directions.
The result is the TGCR(m) algorithm (Algorithm 1) – which has been known since the 1980s. It is
clear that we expect that when the matrix A is nearly symmetric TGCR(m) will perform nearly as well
as the full version GCR - because when A is symmetric, taking m = 1 will yield full orthogonality
of the Apis (Theorem B.2).

Nonlinear case: Newton Krylov. Suppose now that we have to solve the nonlinear system F (x) = 0
(in optimization F is just the gradient of the objective function). At this point, we may ask the question:
why not just use an inexact Newton method whereby the Jacobian system is solved with the linear
GCR or TGCR method? This is where Anderson acceleration provides an interesting insight on
some weaknesses of Newton-Krylov method. A Newton Krylov method generates a Krylov subspace
Span{r0, Jr0, · · · , Jkr0} at a current iterate – say K = x0 – (so J ≡ J(x0) ≡ DF (x0)) and tries
to minimize F (x0 + δ) where δ ∈ K, by exploiting the linear model: F (x0 + δ) ≈ F (x0) + Jδ.
If we generate a basis V = [v1, · · · vk] of K and express δ as δ = V y then we would need to
minimize ‖F (x0) + JV y‖ which is a small least-squares problem. One usually adds to this a global
convergence strategies, e.g., a linesearch or a trust-region technique to produce the next iterate x1.
The problem with this approach is this: the approximate solution obtained after k steps of a Krylov
subspace approach is based on the Jacobian at the initial point x0. The intermediate calculation is
entirely linear and based on J(x0). It is not exploited in any way to produce intermediate (nonlinear)
iterates which in turn could be used to produce more accurate information on some local Jacobian. In
contrast, a method like Anderson acceleration (or in fact any of the secant or multisecant methods)
will do just this, i.e., it will tend to use information on the nonlinear mapping near the most recent
approximation to produce the new iterate. This distinction is rather important although if the problem
is nearly linear, then it could make little difference.

Nonlinear case: Anderson and nlTGCR. Anderson acceleration can be viewed as a form of
Quasi-Newton method whereby the approximate inverse Jacobian is updated at each step by using
the collection of the previous iterates xk, xk−1, · · ·xk−m+1 and the corresponding function values
Fk, Fk−1, · · ·Fk−m+1. To be more accurate it uses the differences ∆xj = xj+1 − xj and the corre-
sponding ∆Fj defined in the same way. Similarly to Newton-Krylov, it generates an approximation of
the form xk+Py where P is a basis of the subspace spanned by the ∆xj’s. Notice how the update now
is on xk the latest point generated. The previous iterates are used to essentially provide information
on the nonlinear mapping and its differential. This information is constantly updated using the most
recent iterate. Note that this is informally stated: Anderson does not formally get an approximation
to the Jacobian. It is based implicitly on exploiting the relation F (xj+1)− F (xj) ≈ J(xj+1 − xj).
Herein lies a problem that nlTGCR aims at correcting: this relation is only vaguely verified. For
example, if we take J to be J(xj), the Jacobian at xj , the resulting linear model is bound to be
extremely inaccurate at the beginning of the iteration.

In nlTGCR, we try to improve on the Newton-Krylov approach, since our starting point is TGCR
which is generalized to nonlinear problems. We also take the viewpoint of improving on Anderson
Acceleration or multisecant methods by not relying on the approximation F (xj+1) − F (xj) ≈
J(xj+1 − xj) mentioned above. This is achieved by adopting the projection viewpoint. Instead
of minimizing ‖F (x0) + JPy‖ as in the inexact Newton mode, we would like to now minimize
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‖F (xk) + JPy‖ where xk is the most recent iterate. This initial idea leads to a difficulty since there
is not one J but several ones at previous points and a single one of them will not be satisfactory.
Thus, we have a few directions pi just like the differences ∆xi in Anderson, but now each pi will
lead to a J(xi)pi which - unlike in AA - is accurately computed and then saved. This feature is what
we believe makes a difference in the performance of the algorithm – although this is something that
would be rather difficult to prove theoretically.

The Quasi-Newton viewpoint.. It is also possible to view the algorithm from the alternative angle
of a Quasi-Newton approach instead of Inexact Newton. In this viewpoint, the inverse of the Jacobian
is approximated progressively. Because it is the inverse Jacobian that is approximated, the method is
akin to Broyden’s second update method.

In our case, the approximate inverse Jacobian Gj at step j is equal to

Gj = PjV
T
j . (24)

If we apply this to the vector vj we get Gjvj = PjV
T
j vj = pj = J(xj)

−1
vj . So Gj inverts J(xj)

exactly when applied to vj . It therefore satisfies the secant equation ([46, sec. 2.3])

Gjvj = pj . (25)

This is the equivalent to the secant condition Gj∆fj = ∆xj used in Broyden’s second update
method. Broyden type-II methods replace Newtons’s iteration: xj+1 = xj − Df(xj)

−1
fj with

xj+1 = xj −Gjfj where Gj approximates the inverse of the Jacobian Df(xj) at xj by the update
formula Gj+1 = Gj + (∆xj − Gj∆fj)vTj in which vj is defined in different ways see [46] for
details.

In addition, the update Gj satisfies the ‘no-change’ condition:

Gjq = 0 ∀q ⊥ vj . (26)

The usual no-change condition for secant methods is of the form (Gj −Gj−m)q = 0 for q ⊥ ∆fj
which in our case would be (Gj −Gj−m)q = 0 for q ⊥ vj . One can therefore consider that we are
updating Gj−m ≡ 0.

It is also possible to find a link between the method proposed herein and the Anderson acceleration,
by unraveling a relation with multi-secant methods. Note that equation (25) is satisfied for (at
most) m previous instances of j, i.e., at step j we have (i0 defined in the algorithm) Gjvi = pi for
i = i0, · · · , j. In other words we can also write

GjVj = Pj . (27)

This is similar to the multi-secant condition GjFj = Xj of Equation (7) – see also equation (13) of
[46] where Fj and Xj are defined in (2). In addition, we clearly also have a multi secant version of
the no-change condition (26) seen above, which becomes:

Gjq = 0 ∀ q ⊥ Span{Vj}. (28)

This is similar to the no-change condition represented by eq. (15) of [46], which stipulates that
(Gj − Gj−m)q = 0 for all q orthogonal to the span of the subspace Span{Fj} mentioned above,
provided we define Gj−m = 0.

A.2 Complexity Analysis

Assume that the iteration number is k and the model parameter size is d. The full memory AA stores
all previous iterations, thus the additional memory is 2kd. To reduce the memory overhead, the
limited-memory (Truncated) AA(m) maintains the most recent m iterations while discarding the
older historical information. In comparison, TGCR and NLTGCR only requires the most recent
iterate to achieve optimal performance, thus the additional memory is 2d. The reduced number of
past iterates also saves the orthogonalization costs from TGCR and NLTGCR compared to AA(m).
In TGCR and NLTGCR, only one orthogonalization is needed to performed which costs O(kd) while
AA(m) requires O(k2d).

For TGCR(m), (2d − 1) flops are performed in Line 5, 4d flops are performed in Lines 6-7 and
m(6d− 1) flops are performed in the for loop and 2d flops are performed in Line 15. If TGCR(m)
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performs k iterations, the computational complexity is ((6m+ 8)d− 1−m)k. Thus, TGCR costs
O(mdk). For symmetric problems, m = 1 is guaranteed to generate the same iterates as m > 1 and
TGCR costs O(dk).

Then we analyze the complexity of nlTGCR(m). m(2d− 1) flops are performed in Line 6, 2md flops
are performed in Line 7, two evaluations of F are performed in Lines 8 and 11. The for loop costs
m(6d− 1) flops and 2d flops are performed in Line 15. When k iterations are performed, nlTGCR
costs O(mdk) plus the costs of 2k function evaluations of F . When m = 1 is used in nonlinear
problems, nlTGCR costs O(dk) plus the costs of 2k function evaluations of F .

A.3 The Frechet derivative

In vector analysis, derivatives provide local linear approximations. Frechet differentiation can be
used to calculate directional derivatives of gradients. We use Frechet Differentiation to compute
the directional derivative of a gradient mapping f at x in direction h, which is v = J(xj+1)p in
algorithm 2. We define Frechet derivative as follows,

Definition 1. Let (S, ‖ · ‖) and (T, ‖ · ‖) be two normed spaces and let X be an open set in (S, ‖ · ‖).

A function f : X −→ T is Fréchet differentiable at x0, where x0 ∈ X , if there exists a linear
operator (DXf) (x0) : X −→ T such that

lim
h→0

‖f (x0 + h)− f (x0)− (Dxf) (x0) (h)‖
‖h‖

= 0

The operator (Dxf) (x0) : X −→ T is referred to the Fréchet derivative at x0.

Appendix B Proofs

B.1 Optimality for Linear Problem

We can write the Generalized Conjugate residual formally as follows

Algorithm 3 GCR

1: Input: Matrix A, RHS b, initial x0.
2: Set p0 = r0 ≡ b−Ax0.
3: for j = 0, 1, 2, · · · , Until convergence do
4: αj = (rj , Apj)/(Apj , Apj)
5: xj+1 = xj + αjpj
6: rj+1 = rj − αjApj
7: pj+1 = rj+1 −

∑j
i=1 βijpi where βij := (Arj+1, Api)/(Api, Api)

8: end for

Theorem B.1 (Lemma 6.21 in [51].). If {p0, . . . , pn−1} is the basis of the Krylov space Kn(A, r0)
which are also ATA orthogonal . Then

xn = x0 +

n−1∑
i=0

〈r0, Api〉
〈Api, Api〉

pi

minimizes the residual among all the iterates with form x0 +Kn(A, r0). Further more, we have

xn = xn−1 +
〈rn−1, Apn−1〉
〈Apn−1, Apn−1〉

pn−1

Proof. We can write xn = x0 +
∑n−1
i=0 βipi and rn = r0 −

∑n−1
i=0 βiApi. Since xn minimizes the

residual, we know the following Petrov–Galerkin condition must hold

(rn, Apj) = 0, j = 0, . . . , n− 1
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The ATA orthogonality gives us

βi =
〈r0, Api〉
〈Api, Api〉

.

Similarly, we can write xn = xn−1 + βn−1pn−1 and rn = rn−1 − βn−1Apn−1. Agagin, the
optimality condition reads

〈rn, pn−1〉 = 0

which gives us
〈rn−1, Apn−1〉
〈Apn−1, Apn−1〉

Theorem B.2. When the coefficient matrix A is symmetric, TGCR(m) generates exactly the same
iterates as TGCR(1) for any m > 0.

Proof. Lines 8 to 14 in Algorithm 1 computes the new direction pj+1 – by ortho-normalizing the
vector Arj+1 against all previous Api’s. In fact the loop of lines 9–13, implements a modified
Gram-Schmidt procedure, which in exact arithmetic amounts simply to setting pj+1 to

βj+1,jpj+1 := rj+1 −
j∑

i=i0

βijpi where βij = (Arj+1, Api) for i0 ≤ i ≤ j. (29)

In the above relation, βj+1,j is the scaling factor ‖v‖ used to normalize p and v in Line 14. Then,
vj+1 ≡ Apj+1 is computed accordingly as is reflected in lines 12 and 14. The update relation
Apj+1 = Arj+1 −

∑
i=i0,j

βijApi (from Line 12) shows that Apj+1 ⊥ Api for i = i0, ..., j. In
addition, it can easily be shown that in this case (m = ∞) the residual vectors produced by the
algorithm are A-conjugate in that (rj+1, Ari) = 0 for i ≤ j. Indeed, this requires a simple induction
argument exploiting the equality:

(rj+1, Ari) = (rj − αjApj , Ari) = (rj , Ari)− αj(Apj , Ari)
and relation (29) which shows that Ari =

∑
βk,i−1Apk.

When A is symmetric, exploiting the relation ri+1 = ri − αiApi, we can see that the scalar βij in
Line 11 of Algorithm 1 is

βij = (Arj+1, Api) =
1

αi
(Arj+1, ri − ri+1) =

1

αi
(rj+1, Ari −Ari+1)

which is equal to zero for i < j. Therefore we need to orthogonalize Arj+1 against vector Apj only
in the loop of lines 9 to 13. This completes the proof.

Theorem B.3. Let x̂t be the approximate solution obtained at the t-th iteration of TGCR being
applied to solve Ax = b, and denote the residual as rt = b−Ax̂t. Then, rt is of the form

rt = ft(A)r0, (30)
where

‖rt‖2 = ‖ft(A)r0‖2 = min
ft∈Pt

‖ft(A)r0‖2, (31)

where Pp is the family of polynomials with degree p such that fp(0) = 1,∀fp ∈ Pp, which are
usually called residual polynomials.
Theorem B.4 (Convergence of TGCR (Indefinite Case)). Suppose A is hermitian, invertible, and
indefinite. Divide its eigenvalues into positive and negative sets Λ+and Λ−, and define

κ+ =
maxλ∈Λ+

|λ|
minλ∈Λ+

|λ|
, κ− =

maxλ∈Λ− |λ|
minλ∈Λ− |λ|

Then xm, the m th solution estimate of TGCR, satisfies

‖rm‖2
‖b‖2

≤ 2

(√
κ+κ− − 1
√
κ+κ− + 1

)bm/2c
where bm/2c means to round m/2 down to the nearest integer.
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Proof. When A is hermitian indefinite, an estimate on the min-max approximation

‖rm‖2
‖b‖2

≤ min
p∈Pm

max
k
|p (λk)| (32)

that represents the worst-case TGCR convergence behavior, can be obtained by replacing the discrete
set of the eigenvalues by the union of two intervals containing all of them and excluding the origin,
say Λ+and Λ−. Then the classical bound for the min-max value can be used to obtain an estimate for
the convergence of the residual [50]

min
p∈Pm

max
k
|p (λk)| ≤ min

p∈Pm
max

z∈Λ+∪Λ−
|p(z)|

≤ 2

(√
κ+κ− − 1
√
κ+κ− + 1

)bm/2c
,

where [m/2] denotes the integer part of m/2.

The optimality of TGCR(m) is proved in Theorem B.5.

Theorem B.5. Let r be the residual generated by the basic TGCR (m), the following relations hold:

1. Span{p0, · · · , pm−1} = Span{r0, · · · , Am−1r0} ≡ Km(r0, A)

2. If m ≥ j, the set of vectors {Api}i=1:j is orthonormal.

3. More generally: (Api, Apj) = δij for |i− j| ≤ m− 1

4. If m ≥ j, then ‖b−Axj‖ = min{‖b−Ax‖ | x ∈ x0 +Km(r0, A)}
Proposition 3. Assume that J(xj) is nonsingular and that µj ≡ vTj rj 6= 0. Then δj = µjpj is a
descent direction for the function φ(x) = 1

2‖F (x)‖2 at xj .

Proof. It is known [11] that the gradient of φ(x) at x is ∇φ(x) = J(x)TF (x). In order for pj to be
a descent direction at xj it is sufficient that the inner product of pj and ∇φ(xj) is negative. Consider
this inner product

(∇φ(xj), µjpj) = µj(J(xj)
TF (xj), pj) = µj(F (xj), J(xj)pj) = µj(−rj , vj) = −µ2

j < 0.
(33)

which proves the result.

B.2 Optimality from Quasi-Newton Viewpoint

Theorem B.6 (Optimality of nltgcr(m) from Quasi-Newton Viewpoint). The matrix Gj is the best
approximation to the inverse Jacobi J(xi)

−1 of F (x) at xi among all the matrices G whose range
Range(G) = Span{Vj}. That is,

Gj = arg min
{G∈Rd×d|GVj=Pj}

‖GJ(xi)− I‖. (34)

Proof. Assume G is an arbitrary matrix satisfying the multisecant condition GVj = Pj . We have
(Gj −G)GTj = 0 and Range(G) = Vj . This can be derived as follows

0 = Pj(P
T
j − PTj ) = PjV

T
j (GT −GTj ) = Gj(G

T −GTj ).

We also have (Gj −G)Vj = 0. Then set ∆ = G−Gj , we have

‖GJ(xi)− I‖ = ‖(Gj + ∆)J(xi)− I‖
= ‖GjJ(xi)− I‖+ ‖∆J(xi)‖+ 2 Trace((GjJ(xi)− I)T∆J(xi))

≥ ‖GjJ(xi)− I‖+ 2 Trace((GjJ(xi)− I)T∆J(xi)).
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Then we prove Trace((GjJ(xi)− I)T∆J(xi)) = 0. In order to prove this, we compute the trace
explicitly. We will denote the natural basis in Rd by {el}dl=1 and l − th column of J(xi) by Jl.

Trace((GjJ(xi)− I)T∆J(xi)) =

d∑
l=1

eTl ((GjJ(xi)− I)T∆J(xi))el

=

d∑
l=1

(JTl G
T
j − eTl )∆Jl

Recall we have Range(G) = Range(Gj) = Span{Vj} and GVj = GjVj = Pj , so{
∆Jl = 0 Jl ∈ Vj

JTl G
T
j = 0, GJl = 0 Jl ∈ V ⊥j

}

B.3 Convergence Analysis

Firstly, we will show the global convergence of the Algorithm 2 from inexact Newton perspective.
Usually, some global strategies like line search or residue check are required for inexact Newton
method to converge for φ(x). In [11], authors showed with the general line search algorithm 4,

Algorithm 4 Linesearch Algorithm

1: β = max{1, ε∗ |∇φ(xn)T pn|
‖pn‖2 }.

2: If φ(xn + βpn) ≤ φ(xn) + αβ∇φ(xn), then set βn = β and exit. Else:
3: Shrink β to be β ∈ [θminβ, θmaxβ] where 0 < θmin ≤ θmax < 1 .Go back to Step. 2.

inexact Newton-Krylov method can converge globally under some mild conditions.
Theorem B.7 (Global Convergence from Algorithm 2 with linearized update and line search). Assume
φ is continuously differentiable and F (x) is L-lipschitz. Furthre more, the residual check is satisfied
‖J(xn)Pnyn + F (xn)‖ ≤ η‖∇f(xn)‖ where 0 ≤ ηn ≤ η < 1. If J(xn) is nonsingular and its
norm is bounded from above for all n, then Pnyn produced in line 7 of Algorithm 2 is a descent
direction and the iterates xn produced by Algorithm 2 with linearized update and line search in
Algorithm 4 will converge to the minimizer:

lim
n→∞

φ(xn) = 0

Proof. Since Algorithm 2 with linearized update is equivalent to inexact Newton Krylov method
with TGCR as the solver for the Jacobian system J(xn)pn = −F (xn), the theorem is just a result of
Theorem B.8.

Theorem B.8 ([11]). Assume φ is continuously differentiable and F (x) is L-Lipschitz and let pn be
such that ‖F (xn) + J(xn)pn‖2 ≤ ηn‖F (xn)‖2 for each ηn ≤ η < 1. Further more, let the next
iterate be decided by Algorithm 4 and J(xn) is nonsingular and bounded from above for all n. Then

lim
n→∞

φ(xn) = 0.

The proof of this theorem depends on the following lemma in [11],
Lemma B.9 (Lemma 3.8 of [11]). Assume φ is differentiable and ∇φ is L-lipschitz. Let 0 < α < 1
and pn denote a descent direction. Then the iterates xn+1 = xn + βpn in Algorithm 4 will generated
in finite backtracking steps and βn satisfies

βn‖pn‖2 ≥ −
∇φT pn
‖pn‖

min
(
ε∗,

1− α
L

θmin

)
.

Theorem B.10 (Global convergence of nlTGCR with residual check). Assume φ is twice differen-
tiable and F (x) is L-lipschitz. If the residual check is satisfied ‖J(xn)Pnyn+F (xn)‖ ≤ ηn‖F (xn)‖
where 0 ≤ ηn ≤ η < 1 and J(xn) is non-singular and the norm of its inverse is bounded from above
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for all n, then Pnyn produced in line 7 of Algorithm 2 is a descent direction and the iterates xn
produced by Algorithm 4 will converge to the minimizer x∗:

lim
n→∞

φ(xn) = φ(x∗) = 0.

Proof. Denote Pnyn by pn, J(xn)pn + F (xn) = rn. Since∇φ(xn) = J(xn)TF (xn) and ‖rn‖ ≤
ηn‖F (xn)‖, we have∇φ(xn)T pn = F (xn)T rn−F (xn)TF (xn) ≤ (η− 1)∇‖F‖2 = −2(1− η)φ
which implies pn is a descent direction. To see the second part of the theorem, we have

φ(xn + βnαpn) ≤ φ(xn) + βnα∇φ(xn)T pn (35)
≤ φ(xn)− 2βnα(1− η)φ(xn) = [1− 2βnα(1− η)]φ(xn). (36)

Denote min
(
ε∗, 1−α

L θmin

)
by C then,

−βn‖pn‖ ≤ C
∇φ(xn)T pn
‖pn‖2

.

Inserting it back to Inequality (27), we have

φ(xn+1) ≤
(

1 + 2α(1− η)C
∇φ(xn)T pn
‖pn‖22

)
φ(xn) (37)

Denote 2α(1 − η)C by λ and ∇φ(xn)T pn
‖pn‖22

by tn, then φ(xn+1) ≤ (1 + λtn)φ(xn). Since φ(xn) is
bounded from below and non-increasing by the inequality. It must converge to a finite limit φ∗. If
φ∗ = 0, we ’re done. Otherwise, dividing the Inequality 37 by φ(xn) on both sides, we have

φ(xn+1)

φ(xn)
≤ (1 + λtn)→ 1, as n→∞. (38)

We also know 1 + λtn ≤ 1. Therefore, tn → 0, as n → ∞. In the above discussion, we showed
2(1 − η)φ(xn) ≤ |tn|‖pn‖22 which implies ‖pn‖ → ∞. Recall pn = J(xn)−1(rn − F (xn)), we
must have ‖pn‖ bounded. This contradicts with the fact ‖pn‖ → ∞. Therefore, φ∗ = 0

To proceed to the superlinear and quadratic convergence results, we need the following lemma from
[20]

Lemma B.11. Assume F is continuously differentiable, {xk} is a sequence such that F (xk) → 0,
and for each k,

‖F (xk+1)‖ ≤ ‖F (xk)‖ and ‖F (xk) + J(xk)pk‖ ≤ η‖F (xk)‖ (39)

where pk = xk+1 − xk and η > 0 is independent of k. If x∗ is a limit point of {xk} such that J(x∗)
is nonsingular, then F (x∗) = 0 and xk → x∗. In this lemma, we don’t require η < 1.

Theorem B.12 (Superlinear and quadratic convergence of nlTGCR ). With the same setting as
Theorem B.10. Assume both ∇φ and ∇2φ are L-Lipschitz. Consider a sequence generated by
Algorithm 2 such that residual check is satisfied ‖J(xn)Pnyn + F (xn)‖ ≤ ηn‖F (xn)‖ where
0 ≤ ηn ≤ η < 1. Moreover, if the following conditions hold

φ(xn + Pnyn) ≤ φ(xn) + α∇φ(xn)TPnyn (40)

φ(xn + Pnyn) ≥ φ(xn) + β∇φ(xn)TPnyn (41)

for α < 1
2 and β > 1

2 . If xn → x∗ with J(x∗) nonsingular , then F (x∗) = 0. Moreover, there
exists Ns such that xn → x∗ superlinearly for n ≥ Ns if ηn → 0, as n → ∞. Furthermore, if
ηn = O(‖F (xn)‖2), the convergence is quadratic.

Proof. In the proof, we denote Pnyn by pn for convenience and utilize the proof of Theorem 3.15
in [11]. According to assumptions, xn → x∗ with J(x∗) nonsingular, then J(xn) is nonsingular
for n > nJ for some large enough nJ . Next, if F (xn) = 0 for some n ≥ nJ , then residual
check condition will imply pn = 0 which means xm = xn for all m ≥ n. Then the results hold
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automatically because the sequence converges in finite steps. Therefore, we can assume J(xn) is
nonsingular and F (xn) is nonzero for all n.

The residual check condition implies pn is a descent direction according to Lemma B.9. That is,
∇φ>pn < 0. Then we can show

lim
n→∞

∇φ>n pn
‖pn‖

= 0.

To show this notice that according to 40, the following inequality holds

φn − φn+1 ≥ −α∇φ(xn + pn)>(xn+1 − xn) = ‖pn‖
∇φ>n pn
‖pn‖

Since φn is monotone decreasing, thus ‖pn‖∇φ
>
n pn
‖pn‖ → 0 as n→∞. To show limn→∞

∇φ>n pn
‖pn‖ → 0.

We also need to apply 41. Firstly, according to mean value theorem, there exists a λ ∈ (0, 1) such that

φn+1 − φn = ∇phi(xn + λpn)>pn. (42)

According to 41,

φn+1 − φn = ∇φ(xn + λpn)>pn ≥ β∇φ>n pn. (43)

This yields

[∇φ(xn + λpn)−∇φ(xn)]>pn ≥ (β − 1)∇φ>n pn > 0.

According to Cauchy-Schwartz inequality,

(β − 1)
∇φ>n pn
‖pn‖

‖pn‖ ≤ ‖pn‖‖∇φ(xn + λpn)−∇φ(xn)‖ ≤ Lλ‖pn‖2 (44)

Therefore,

‖pn‖ ≥
(β − 1)

Lλ

∇φ>n pn
‖pn‖

> 0. (45)

which means we can draw the conclusion that ‖pn‖∇φ
>
n pn
‖pn‖ → 0 implies ∇φ

>
n pn
‖pn‖ → 0. If xn → x∗

with J(x∗) nonsingular, then by Lemma B.11, we know F (x∗) = 0. According to the definition,

pn = −J−1
n Fn + J−1

n (Fn + Jnpn). (46)

This implies

‖pn‖ ≤ ‖J−1
n ‖‖Fn‖+ ‖J−1

n ‖‖Fn + Jnpn‖ ≤ (1 + η)‖J−1
n ‖‖Fn‖. (47)

We know ‖Fn‖ → 0 as xn → x∗. The above inequality implies that ‖pn‖ → 0 as xn → x∗ since Jn
is nonsingular. Denote the residual Fn + Jnpn by rn. Then ‖rn‖ ≤ η‖Fn‖ and pn = J−1

n (rn−Fn).
Therefore,

∇φ>n = (J>n Fn)>J−1
n (rn − Fn) = F>r − F>F. (48)

This implies

|∇φ>n pn|
‖pn‖

=
|F>r − F>F |
‖J−1
n (rn − Fn)‖

≥ |F
>F | − |F>r|

‖J−1
n (rn − Fn)‖

. (49)

Since ‖rn‖ ≤ ‖Fn‖ implies |F>r| ≤ η‖Fn‖2, we have

|F>F | − |F>r| ≥ (1− η)‖Fn‖2. (50)

Moreover,

‖J−1
n (rn − Fn)‖ ≤ ‖J−1

n ‖‖Fn‖+ ‖J−1
n r‖2 ≤ (1 + η)‖J−1

n ‖‖Fn‖. (51)

Finally, we have

|∇φ>n pn|
‖pn‖

≥ (1− η)‖Fn‖2

(1 + η)‖J−1
n ‖‖Fn‖

=
(1− η)‖Fn‖
(1 + η)‖J−1

n ‖
. (52)
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Using ‖∇φn‖ = ‖J>n Fn‖ ≤ ‖Jn‖‖Fn‖, we have

|∇φ>n pn|
‖∇φn‖‖pn‖

≥ (1− η)

(1 + η)Mn
, (53)

where Mn = cond2(Jn). Therefore, we have

−∇φ>n pn
‖pn‖

≥ (1− η)

(1 + η)Mn
‖∇φn‖ ≥

(1− η)

(1 + η)Mn
‖Jn‖−1‖Fn‖, (54)

This yields,

‖Fn‖ ≤
(1 + η)Mn

(1− η)
‖Jn‖

−∇φ>n pn
‖pn‖

. (55)

Hence,

‖Fn‖‖pn‖ ≤
(1 + η)Mn

(1− η)
‖Jn‖(−∇φ>n pn) = −an∇φ>n pn), (56)

where an = (1+η)Mn

(1−η) ‖Jn‖ . Combining 47, we have

‖pn‖2 ≤
(1 + η)2M2

n

(1− η)2
(−∇φ>n pn) = −bn∇φ>n pn), (57)

where bn =
(1+η)2M2

n

(1−η)2 . Next we show the convergence of the algorithm with the aid of the second
order Taylor expansion. Notice

∇φ(x) = J>F (x) = [∇F1(x) . . .∇Fn(x)]

F1(x)
...

Fn(x)

 (58)

The Hessian can be computed as follows

∇2φ(x) = JTJ +

n∑
i=1

∇2Fi(x)Fi(x) = JTJ +G(x), (59)

where ‖G(x)‖ = ‖
∑n
i=1∇2Fi(x)Fi(x)‖ → 0 as xn → x∗ since F (x∗) = 0. using second order

Taylor expansion, we have

φn+1 − φn −
1

2
∇φ>n pn =

1

2
(∇φn +∇2φ(x̄)pn)>pn. (60)

where x̄ = γxn + (1− γ)xn+1 for some γ ∈ (0, 1). Then we can have

|φn+1 − φn −
1

2
∇φ>n pn| =

1

2
|(∇φn +∇2φ(x̄)pn)>pn|

=
1

2
|(∇φn +∇2φnpn)>pn + p>n (∇2φ(x̄)−∇2φn)pn|

≤ 1

2
(‖J>n (Fn + Jnpn)‖‖pn‖+ ‖Gn‖‖pn‖2 + L‖pn‖‖pn‖2)

≤ (η‖Jn‖‖Fn‖‖pn‖+ (‖Gn‖+ L‖pn‖)‖pn‖2)

≤ −1

2
(anηn‖Jn‖+ bn(‖Gn‖+ L‖pn‖))∇φ>n pn

= −1

2
εnφ
>
n pn,

(61)

where εn = anηn‖Jn‖+ bn(‖Gn‖+ L‖pn‖). Therefore,

1

2
(1 + εn)∇φ>n pn ≤ φn+1 − φn ≤

1

2
(1− εn)∇φ>n pn (62)
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Notice that ‖Jn‖, an and bn are all bounded from above and ηn, ‖Sn‖ and ‖pn‖ all converges to 0 as
xn → x∗. Therefore εn → 0 as xn → x∗. And choose lager enough N such that for all n ≥ N the
following holds

εn ≤ min{1− 2α, 2β − 1}. (63)
Then for all n ≥ N , the Goldsetin-Armijo condition is satisfied,

βφ>n pn ≤ φn+1 − φn ≤ αφ>n pn. (64)
We then finish the proof following Theorem 3.3 in [15]. It’s easy to see

J(x∗)(xk+1 − x∗) = [I + J∗(J
−1
k − J−1

∗ )](rk + [Jk − J∗](xk − x∗)− [Fk − F∗ − J∗(xk − x∗)])
(65)

Taking norm yields

‖xk+1 − x∗‖ ≤ [‖J−1
∗ ‖+ ‖J∗‖‖J−1

k − J−1
∗ ‖][‖rk‖+ ‖Jk − J∗‖‖xk − x∗‖+

‖Fk − F∗ − J∗(xk − x∗)‖]
= [‖J−1

∗ ‖+ ‖J∗‖‖J−1
k − J−1

∗ ‖][‖rk‖+ ‖Jk − J∗‖‖xk − x∗‖
+ ‖Fk − F∗ − J∗(xk − x∗)‖]

= [‖J−1
∗ ‖+ o(1)][o(Fk) + o(1)‖xk − x∗‖+ o(‖xk − x∗‖)]

(66)

Therefore,
‖xk+1 − x∗‖ = o(Fk) + o(1)‖xk − x∗‖+ o(‖xk − x∗‖), k →∞. (67)

where we used the fact that for sufficient small ‖y − x∗‖
1

α
‖y − x∗‖ ≤ ‖F (y)‖ ≤ α‖y − x∗‖. (68)

which is Lemma 3.1 in [15]. Similarly, to show quadratic convergence, juts notice

‖F (y)− F (x∗)− F (x∗)(y − x∗)‖ ≤ L
′
‖y − x∗‖2 (69)

for some constant L
′

and sufficient small ‖y − x∗‖. For more details, check Lemma 3.2 in [15].

B.4 Stochastic nlTGCR

Denote the noisy gradient by F (x; ξG) and the noisy evaluation of Hessian along a vector p by
J(x; ξH)p. The subsample exact Newton algorithm is defined in Algorithm 5. At k-th iteration, we
uniformly subsample Gk,Hk from full sample set to estimate the noisy gradient and Hessian, so both
of them are unbiased. Before we start the theoretical analysis, we need to make some assumptions

Algorithm 5 subsmaple Exact Newton

1: for i = 1, . . . , k do
2: Estimate F (xi;Gi) and J(xi;Hi)
3: xi+1 ← xi − siJ−1(xi;Hi)F (xi;Gi)
4: end for

which are usual in stochastic setting.

Assumptions for stochastic setting

E1 The eigenvalues of Hessian matrix for any sample |H| = β is bounded form below and
above in Loewner order

µβI � J(x,H) � LβI. (70)
Further more, we require there is uniform lower and upper bound for all subsmaples. That
is, there exists µ̂ and L̂ such that

0 ≤ µ̂ ≤ µβ and Lβ ≤ L̂ <∞, ∀β ∈ N. (71)
And the full Hessian is bounded below and above

µI � J(x) � LI, ∀x. (72)
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E2 The variance of subsampled gradients is uniformly bounded by a constant C.

tr(Cov(F (x))) ≤ C2, ∀x (73)

E3 Hessian is M-Lipschitz, that is

‖J(x)− J(y)‖ ≤M‖x− y‖, ∀x, y (74)

E4 The variance of subsampled Hessianis bounded by a constant σ.

‖EH[(J(x;H)− J(x))]‖ ≤ σ, ∀x (75)

E5 There exists a constant γ such that

E[‖xn − x∗‖2] ≤ γ(E[‖xn − x∗‖])2.

Firstly, we recall the few results on subsample Newton method from [5].

Theorem B.13 (Theorem 2.2 in [5]). Assume xn is generated by Algorithm 5 with |Gi| = ηi for
some η > 1, |H| = β ≥ 1 and si = s =

µβ
L and Assumptions E1-E2 hold, then

Ek[φ(xk)− φ(x∗)] ≤ ατk, (76)

where

α = max
{
φ(x0)− φ(x∗),

C2Lβ
µµβ

}
and τ = max

{
1− µµβ

2LLβ
,

1

η

}
.

Theorem B.14 (Lemma 2.3 form [5]). Assume xn is generated by Algorithm 5 with si ≡ 1 and
Assumptions E1-E3 hold. Then

Ek[‖xn+1 − x∗‖] ≤
1

µ|Hn|

[M
2
‖xn − x∗‖2 + Ek[‖(J(xn; ξHn)− J(xn))(xn − x∗)‖] +

C√
|Gn|

]
Lemma B.15 (Lemma 2.4 from [5]). Assume the assumption E1 and E4 hold. Then

Ek[‖(J(xn; ξHn)− J(xn))(xn − x∗)‖] ≤
σ√
Hn
‖xk − x∗‖. (77)

Theorem B.16 (Convergence of stochastic version of nlTGCR ). Assume |Hn| = β ≥ 16σ2

µ , ∀n,
residue check is satisfied for ηn ≤ η ≤ 1

4L and assumptions E1-E5 hold. The iterates generated by
the stochastic version Algoritrhm 2 converges to x∗ if ‖xk − x∗‖ ≤ µ

2Mγ .

E‖xn+1 − x∗‖ ≤
3

4
E‖xn − x∗‖ (78)

Proof.

En[‖xn+1 − x∗‖] = En[‖xn − x∗ − J(xn)−1F (xn)‖] + En[‖J(xn)−1F (xn) + PnV
T
n yn‖]

The first term can be bounded using the Theorem B.14 and Lemma B.15,

En[‖xn − x∗ − J(xn)−1F (xn)‖] ≤ 1

µ|Hk|

[M
2
‖xn − x∗‖2+

Ek[‖(J(xn; ξHn)− J(xn))(xn − x∗)‖] +
C√
|Gn|

]
≤ 1

µ
[
M

2
‖xn − x∗‖2 +

σ√
Hn
‖xn − x∗‖]

=
M

2µ
‖xn − x∗‖2 +

σ

µ
√
β
‖xn − x∗‖]
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We can bound the second term through the line search, recall at each iteration we have

En[‖J(xn)−1F (xn) + PnV
T
n yn‖] = En[‖F (xn) + J(xn)PnV

T
n yn‖]

≤ ηnEk[‖F (xn)‖] ≤ ηnL‖xn − x∗‖.

The last inequality comes from the assumption that eigenvalues of J(x) is uniformly upper bounded
by L. Finally, combining the above inequalities gives us

En[‖xn+1 − x∗‖] ≤
M

2µ
‖xn − x∗‖2 +

σ

µ
√
β
‖xn − x∗‖+ ηnL‖xn − x∗‖

Taking the total expectation on both sides leads to

EEn[‖xn+1 − x∗‖] = E‖xn+1 − x∗‖ ≤
M

2µ
E[‖xn − x∗‖2 + (

σ

µ
√
β

+ ηnL)E[‖xn − x∗‖]

≤ Mγ

2µ
E‖xn − x∗‖E‖xn − x∗‖+ (

σ

µ
√
β

+ ηnL)E[‖xn − x∗‖]

We prove the convergence by induction, notice that

E‖x1 − x∗‖ ≤
Mγ

2µ
E‖x0 − x∗‖E‖x0 − x∗‖+ (

σ

µ
√
β

+ ηnL)E[‖x0 − x∗‖]

≤
(Mγ

2µ
E‖x0 − x∗‖+

σ

µ
√
β

+ ηL
)
E[‖x0 − x∗‖]

≤
(Mγ

2µ
∗ µ

2Mγ
+

σ

µ
√

16σ2

µ

+
1

4L
∗ L
)
E‖x0 − x∗‖ =

3

4
E‖x0 − x∗‖

Now assume inequality 78 holds for n− th iteration, we prove it for n+ 1-th iteration

EEn[‖xn+1 − x∗‖] ≤
(Mγ

2µ
E‖xn − x∗‖+

σ

µ
√
β

+ ηL
)
E[‖xn − x∗‖] ≤

3

4
E[‖xn − x∗‖]

Appendix C Experimental Details and More Experiments

In this section, we first include more experimental details that could not be placed in the main paper
due to the space limitation. We then present more experimental results of NLTGCR for different
settings and difficult problems.

C.1 Experimental Details

We provide codes implemented in both Matlab and Python. All experiments were run on a Dual
Socket Intel E5-2683v3 2.00GHz CPU with 64 GB memory and NVIDIA GeForce RTX 3090.

For linear problems considered in Section 4.1, A,b, c, and initial points are generated using normally
distributed random number. We use ATA + αI to generate symmetric matrices. The step size is set
as 1 after rescaling A to have the unit 2-norm. For solving linear equations, we depict convergence
by use of the norm of residual, which is defined as ‖b−Ax‖. For solving bilinear games, we depict
convergence by use of the norm of distance to optima, which is defined as ‖w∗ −wt‖. For most
baselines, we use the Matlab official implementation.

The softmax regression problem considered in Section 4.2 is defined as follows,

f = −1

s

s∑
i=1

log

 e
wTyj

x(i)∑k
j=1 e

wTj x
(i)

 , (79)

where s is the total number of sample, k is the total number of classes, x(i) is vector of all features of
sample i, wj is the weights for the jth class, and yj is the correct class for the ith sample.
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C.2 TGCR(1) for linear system

We first test the robustness of TGCR(1) for solving linear systems by running with 50 different
initials. Figure 3 indicates TGCR converge well regardless of initialization. We then compare the
performance on bilinear games with Anderson Acceleration as [26] shows AA outperforms existing
methods on such problems.

(a) A is SPD (b) A is symmetric indefinite

Figure 3: Linear Systems Ax = b,A ∈ R100×100: Comparison in terms of iteration over 50
random runs. We can observe that TGCR(1) match full memory GMRES in the first stage and
consistently converge faster than AA(10).

Minimax Optimization. Next, we test TGCR on the following zero-sum bilinear games:

min
x∈Rn

max
y∈Rn

f(x,y) = xTAy + bTx + cTy, A is full rank. (80)

Bilinear games are often regarded as an important but simple class of problems for theoretically
analyzing and understanding algorithms for solving general minimax problems [66, 2]. Here we
consider simultaneous GDA mapping for minimax bilinear games

( I −ηA
ηAT I

)
[26]. Although this

mapping is skew-symmetric, TGCR can still exploit the short-term recurrence. It can be observed
from Figure 4 that Krylov subspace methods such as TGCR and AA converge fast for bilinear
problem when A is either SPD or random generated. More importantly, Figure 4 demonstrates that
TGCR (1) exhibits a superlinear convergence rate and converges to optimal significantly faster than
AA(m) in terms of both iteration number and computation time.

(a) A is SPD (b) Time Comparison (4a) (c) A is random generated

Figure 4: Bilinear Problems: 4a: Distance to optimal vs. Iterations; 4b: Distance to optimal vs.
Time; 4c: Distance to optimal vs. Iterations. It can be observed that the short-term property (Theorem
3.1) holds as long as the mapping is symmetric or skew-symmetric.

C.3 TGCR(1) for nonsymmetric quadratic minimization and linear system

A quadratic form is simply a scalar, quadratic function of a vector with the form

f(x) =
1

2
xTAx− bTx + c, (81)
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where A is a matrix, x and b are vectors, and c is a scalar constant. When A is symmetric and
positive-definite, f(x) is minimized by the solution to Ax = b.

(a) Quadratic form (81) (b) Linear System Ax = b

Figure 5: A is nonsymmetric. In Figure 5a, we can find TGCR (1) still converges fast because the
Hessian of Equation 81 is 1

2 (AT +A), which is still symmetric. In Figure 5b, we can find TGCR(100)
has the same convergence rate with GMRES. This shows that TGCR(m) can still converge for solving
nonsymmetric linear systems with m > 1 and is mathematically equivalent to non-restart GMRES
when m is equal to the matrix size.

C.4 Investigation of Stochastic NLTGCR

In the main paper, we report the effectiveness of NLTGCR for softmax regression on MNIST. We give
the result about using deterministic and stochastic gradients in Figure 2 and find that NLTGCR only
requires a small batch size and table size (1) . In this section, we further investigate the effectiveness
of NLTGCR in a stochastic setting, provide additional experimental results in Figure 6 and Figure
7. From Figure 6, we can observe that using the same batch size and table size m = 1, stochastic
NLTGCR consistently outperforms stochastic AA. Also, it can be observed from Figure 7 that
stochastic NLTGCR outperforms stochastic AA for different table size using a fixed batch size of
1500. Although the short-term property does not strictly hold in a stochastic setting, we can still
observe that NLTGCR outperforms AA with a smaller variance. In addition, it is worth noting that a
smaller table size works better for both NLTGCR and AA. We suspect this is due to the accumulation
of inaccurate gradient estimates.

(a) Loss (b) Test Accuracy

Figure 6: Softmax Regression: Effects of batch size, m = 1

Compatible with Momentum Another important technique in optimization is momentum, which
speeds up convergence significantly both in theory and in practice. We experimentally show that
it is possible to further accelerate the convergence of NLTGCR by using Momentum. We run
stochastic NLTGCR with different momentum term and present results in Figure 8. It suggests that by
incorporating momentum into NLTGCR momentum further accelerates the convergence, although the
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(a) Loss (b) Test Accuracy

Figure 7: Softmax Regression: Effects of table size in a stochastic setting, B = 1000

variance gets larger for a large momentum term v. We leave the theoretical analysis of of NLTGCR
with momentum for future work.

(a) Loss (b) Test Accuracy

Figure 8: Softmax Regression: Compatibile with momentum. We further test the acceleration
effect of momentum on stochastic NLTGCR. It shows that stochastic NLTGCR with momentum
converges faster than the one without momentum.

C.5 Results for Deep learning applications

C.5.1 Image classification using CNN

In a more realistic setting, we test our algorithm for neural networks on an image classification task.
Particularly, we use the standard MNIST dataset 2. The architecture of the network is based on
the official PyTorch implementation 3. We tried our best to ensure that the baselines had the best
performance in the tests. Hyperparamters are selected after grid search. We use a batch size of 64.
For SGD, Nestrov (v = 0.9), Adam (default β1 and β2), and NLTGCR (m = 1), we use a learning
rate of 1 × 10−2, 1 × 10−1, 1 × 10−3, and 1 × 10−3, respectively. Figure 9a shows the curves
of loss for training the neural network on MNIST. Figure 9b shows the curves of test accuracy on
MNIST. It can be found that NLTGCR outperforms SGD and Nestrov and is comparable to Adam.
In addition, we conduct experiments on the effects of table size for NLTGCR and present results in
Figure 10. Although Figure 10b, shows m = 10 does slightly better, we found that m = 1 generally
yields robust results. In addition, m = 1 significantly reduces the memory and computation overhead.
As a result, we would like to suggest m = 1 for general experiments. These preliminary results
provide insights of the effectiveness of our algorithm for training neural networks. Our algorithm is
comparable with the widely used optimizer, Adam. In addition, our algorithm is more memory and
computation efficient than other nonlinear acceleration methods including AA and RNA. As a result,

2http://yann.lecun.com/exdb/mnist/
3implementation https://github.com/pytorch/examples/blob/master/mnist.
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it is worth investigating the performance of NLTGCR for different tasks and more complex networks.
We leave it for our future work.

(a) Loss (b) Test Accuracy

Figure 9: Training on MNIST. Averaged on 5 runs, m = 1 for our algorithm.

(a) Loss (b) Test Accuracy

Figure 10: Effects of table size m We run experiments with a fixed seed. It shows S-NLTGCR(10)
does slightly better than Adam and S-NLTGCR(m < 10). We would suggest to use m = 1 for saving
memory and computation.

C.5.2 Image classification using ResNet

We now perform our tests on ResNet32 [28] 4 using CIFAR10 [37]. We randomly split the training set
of all the datasets into two subsets, train and validation. The former is used to train the neural network,
whereas the latter is used for measuring the performance of the learned model. Hyperparameters
are selected after a grid search. We use a batch size of 128. For Nesterov (v = 0.9), Adam (default
β1 and β2), and NLTGCR (m = 1), we use a learning rate of 3 × 10−4, 1 × 10−3, and 1 × 10−1,
respectively. For better visualization, figure 11 shows the curves of training loss and validation
accuracy using 50 epochs. It can be observed that nlTGCR(1) consistently outperforms baselines and
has a smaller variance.

C.5.3 Time series forecasting using LSTM

Next, we test our algorithm for Long Short-Term Memory [32] on time series forecasting task using
Airplane Passengers and Shampoo Sales Dataset 5. We use a learning rate of 0.04 and the mean
squared error (MSE) as our loss function and evaluation metric. Figure 12 depicts the MSE on
validation set during training. It shows TGCR converges better than baselines. It also suggests
TGCR is capable of optimizing complex deep learning architectures.

4https://github.com/akamaster/pytorch_resnet_cifar10
5https://github.com/spdin/time-series-prediction-lstm-pytorch
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(a) Training MSE (b) Validation Accuracy

Figure 11: Validation MSE of training ResNet32 on CIFAR10. Averaged on 5 runs (manual
random seed 0 to 5 for all methods), m = 1 for our algorithm. nlTGCR(1) consistently outperforms
baselines and has a smaller variance.

(a) Airline-passengers (b) shampoo

Figure 12: Validation MSE of LSTM on two datasets. Averaged on 5 runs, m = 1 for our
algorithm. It can be observed that nlTGCR(1) outperforms baselines.

C.5.4 Semi-supervised classification of graph data using GCN

We also test the effectiveness of nlTGCR on GCN [36] using Cora Dataset. It consists of 2708
scientific publications classified into one of seven different classes. The citation network consists
of 5429 links. Each publication in the dataset is described by a 0/1-valued word vector indicating
the absence/presence of the corresponding word from the dictionary. The objective is to accurately
predict the subject of a paper given its words and citation network, as known as node classification.
Hyperparameters are selected after a grid search. For Nesterov (v = 0.9), Adam (default β1 and β2),
and NLTGCR (m = 1), we use a learning rate of 1× 10−1, 1× 10−2, and 1× 10−1, respectively.
Figure 13a and 13b depict the training loss and validation accuracy averaged on 5 runs. It shows
TGCR converges faster and achieves higher accuracy than baselines, which demonstrates the
effectiveness of TGCR optimizing complex deep learning architectures.
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(a) Train Loss (b) Validation Accuracy

Figure 13: Validation accuracy on CORA using GCN. Averaged on 5 runs, m = 1 for our
algorithm. It can be observed that nlTGCR(1) significantly outperforms baselines.

31


	1 Introduction
	2 Background
	2.1 Extrapolation, acceleration, and the Anderson Acceleration procedure
	2.2 Inexact and quasi-Newton methods

	3 Exploiting symmetry
	3.1 The linear case: Truncated GCR (TGCR)
	3.2 The nonlinear case: nlTGCR 
	3.2.1 Linearized update version
	3.2.2 Non-linear update version with residual check

	3.3 Connections with other methods

	4 Experimental Results
	4.1 Linear Problems
	4.2 Nonlinear Problems: Softmax Classification
	4.3 Deep learning applications

	5 Conclusion
	A Additional Discussion
	A.1 High-Level Clarification
	A.2 Complexity Analysis
	A.3 The Frechet derivative 

	B Proofs
	B.1 Optimality for Linear Problem
	B.2 Optimality from Quasi-Newton Viewpoint
	B.3 Convergence Analysis
	B.4 Stochastic nlTGCR

	C Experimental Details and More Experiments
	C.1 Experimental Details
	C.2 TGCR(1) for linear system
	C.3 TGCR(1) for nonsymmetric quadratic minimization and linear system
	C.4 Investigation of Stochastic NLTGCR
	C.5 Results for Deep learning applications 
	C.5.1 Image classification using CNN
	C.5.2 Image classification using ResNet
	C.5.3 Time series forecasting using LSTM
	C.5.4 Semi-supervised classification of graph data using GCN



