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Abstract

The transfer of models trained on labeled datasets
in a source domain to unlabeled target domains
is made possible by unsupervised domain adapta-
tion (UDA). However, when dealing with complex
time series models, the transferability becomes
challenging due to the dynamic temporal structure
that varies between domains, resulting in feature
shifts and gaps in the time and frequency repre-
sentations. Furthermore, tasks in the source and
target domains can have vastly different label dis-
tributions, making it difficult for UDA to mitigate
label shifts and recognize labels that only exist
in the target domain. We present RAINCOAT, the
first model for both closed-set and universal DA
on complex time series. RAINCOAT addresses fea-
ture and label shifts by considering both temporal
and frequency features, aligning them across do-
mains, and correcting for misalignments to facili-
tate the detection of private labels. Additionally,
RAINCOAT improves transferability by identify-
ing label shifts in target domains. Our experi-
ments with 5 datasets and 13 state-of-the-art UDA
methods demonstrate that RAINCOAT can achieve
an improvement in performance of up to 16.33%,
and can effectively handle both closed-set and
universal adaptation.

1. Introduction
Neural networks have demonstrated impressive performance
on time series datasets (Ravuri et al., 2021; Lundberg et al.,
2018). However, their performance deteriorates rapidly un-
der domain shifts, making it challenging to deploy these
models in real-world scenarios (Zhang et al., 2022a;b). Do-
main shifts occur when the test distribution is not identical
to the training data, even though it is often related (Koh et al.,
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Universal DA, the correction step prioritizes target-specific fea-
tures to detect private target classes.

2021; Luo et al., 2018; Zhang et al., 2013), meaning that la-
tent representations do not generalize to test datasets drawn
from different underlying distributions, even if the differ-
ences between these distributions are minor. To overcome
these challenges, domain adaptation (DA) has emerged as
a set of techniques that allow adaptation to new target do-
mains and reduce bias by leveraging unlabeled data in target
domains (Ganin et al., 2016; Long et al., 2015).

Training models that can adapt to domain shifts is crucial for
robust, real-world deployment. For instance, for healthcare
time series, data collection methods vary widely across dif-
ferent clinical sites (domains) (Zhang et al., 2022c), leading
to shifts in the underlying features and labels. It is preferable
to train a model on a diverse dataset collected from multiple
clinics rather than training and applying individual models
on smaller, single-domain datasets for each clinic. Addi-
tionally, training a model that can detect unknown classes
in test data, such as patients with rare diseases (Alsentzer
et al., 2022), is advantageous for real-world implementa-
tion among end-users, such as clinicians (Tonekaboni et al.,
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2019). Endowing learning systems with DA capabilities
can increase their reliability and expand applicability across
downstream tasks.

DA is a highly complex problem due to several factors.
First, models trained for robustness to domain shifts must
learn highly generalizable features; however, neural net-
works trained using standard practices can rely on spurious
correlations created by non-causal data artifacts (Geirhos
et al., 2020; DeGrave et al., 2021), hindering their ability
to transfer across domains. Additionally, shifts in label dis-
tributions across domains may result in private labels, i.e.,
classes that exist in the target domain but not in the source
domain (Lipton et al., 2018). In unsupervised DA, a model
must generalize across domains when labels from the target
domain are not available during training (Long et al., 2018a;
Kang et al., 2019a). Therefore, DA methods must be able
to identify when a private label is encountered in the target
domain without any prior supervision on detecting these
unknown labels (You et al., 2019; Fu et al., 2020). Yet, that
is not possible by techniques that rely on training samples
that simulate predicting unknown labels. This highlights the
need for time series DA methods that 1) produce generaliz-
able representations robust to feature and label shifts, and
2) expand the scope of existing DA methods by supporting
both closed-set and universal DA.

DA becomes even more challenging when applied to time
series data. Domain shifts can occur in both the time and
frequency features of time series, which can create a shift
that highly perturbs time features while frequency features
are relatively unchanged, or vice versa (Fig. 1a). Previous
time series DA methods fail to explicitly model frequency
features, which can lead to catastrophic negative transfer.
Additionally, the area of universal DA for time series, when
no assumptions are made about the overlap between labels
in the source and target domains, is an unexplored area
of research (Fig. 1b). There is a crucial need for robust
methods with inductive biases specific to time series.

Present Work. We introduce RAINCOAT (fRequency-
augmented AlIgN-then-Correct for dOmain Adaptation for
Time series) 1, a novel domain adaptation method for time
series data that can handle both feature and label shifts
(as shown in Fig. 1). Our method is the first to address
both closed-set and universal domain adaptation for time
series and has the unique capability of handling feature
and label shifts. To achieve this, we first use time and
frequency-based encoders to learn time series representa-
tions, motivated by inductive bias that domain shifts can
occur via both time or frequency feature shifts. Next, we
propose the use of Sinkhorn divergence for source-target
feature alignment, and provide both empirical evidence

1Project Website: https://zitniklab.hms.harvard.edu/projects/
Raincoat/

and theoretical justification for its superiority over other
popular divergence measures. Finally, we introduce an
“align-then-correct” procedure for universal DA, which first
aligns the source and target domains, retrains the encoder
on the target domain to correct misalignments, and then
measures the difference between the aligned and corrected
representations of target samples to detect unknown target
classes (as shown in Fig. 2). We evaluate RAINCOAT on
five time series datasets from various modalities, includ-
ing human activity recognition, mechanical fault detection,
and electroencephalogram prediction. Our method outper-
forms strong baselines by up to 9.0% for closed-set DA and
16.33% for universal DA. The source code are available at
https://github.com/mims-harvard/Raincoat.

2. Related Work
General Domain Adaptation. General domain adaptation
(DA), leveraging labeled source domain to predict labels on
the unlabeled target domain, has a wide range of applica-
tions (Ganin and Lempitsky, 2015; Sener et al., 2016; Zhang
et al., 2018; Perone et al., 2019; Ramponi and Plank, 2020).
We organize DA methods into three categories: 1) Adversar-
ial training: A domain discriminator is optimized to distin-
guish source and target domains, while a deep classification
model learns transferable features indistinguishable by the
domain discriminator (Hoffman et al., 2015; Tzeng et al.,
2017; Motiian et al., 2017; Long et al., 2018a; Hoffman
et al., 2018). 2) Statistical divergence: These approaches
aim to extract domain invariant features by minimizing do-
main discrepancy in a latent feature space. Widely used
measures include MMD (Rozantsev et al., 2016), correlation
alignment (CORAL) (Sun and Saenko, 2016), contrastive
domain discrepancy (CDD) (Kang et al., 2019a), optimal
transport distance (Courty et al., 2017; Redko et al., 2019),
and graph matching loss (Yan et al., 2016; Das and Lee,
2018). 3) Self-supervision: These general DA approaches
incorporate auxiliary self-supervision training tasks. These
methods learn domain-invariant features through a pretext
learning task, such as data augmentation and reconstruc-
tion, for which a target objective can be computed without
supervision. Contrastive methods capture the semantic in-
formation of the samples by maximizing the lower bound
of the mutual information between two augmented views
(Kang et al., 2019b; Singh, 2021; Tang et al., 2021). In
addition, reconstruction-based methods achieve alignment
by carrying out source domain classification and reconstruc-
tion of target domain data or both source and target domain
data (Ghifary et al., 2016; Jhuo et al., 2012). More discus-
sion can be founded in existing review papers focusing on
domain adaptation (Ramponi and Plank, 2020; Liu et al.,
2022). RAINCOAT sits in the category of both 2 and 3.

Domain Adaptation for Time Series. While in light of

https://zitniklab.hms.harvard.edu/projects/Raincoat/
https://zitniklab.hms.harvard.edu/projects/Raincoat/
https://github.com/mims-harvard/Raincoat
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Figure 2. Illustration of the RAINCOAT method for time series DA. Details provided in-text.

successes in computer vision, limited methods have focused
on adaptation approaches for time series data. To date, few
DA methods are specifically designed for time series. 1)
Adversarial training: VRADA (Purushotham et al., 2017)
builds upon a variational recurrent neural network (VRNN)
and trains adversarially to capture complex temporal rela-
tionships that are domain-invariant. CoDATS (Wilson et al.,
2020) builds upon VRADA but uses a convolutional neural
network for the feature extractor. 2) Statistical divergence:
SASA (Cai et al., 2021) aligns the condition distribution of
the time series data by minimizing the discrepancy of the
associative structure of time series variables between do-
mains. AdvSKM (Liu and Xue, 2021a) and (Ott et al., 2022)
are metric-based methods that align two domains by con-
sidering statistic divergence. 3) Self-supervision: DAF (Jin
et al., 2022) extracts domain-invariant and domain-specific
features to perform forecasts for source and target domains
through a shared attention module with a reconstruction task.
CLUDA (Ozyurt et al., 2022) and CLADA (Wilson et al.,
2021) are two contrastive DA methods that use augmen-
tations to extract domain invariant and contextual features
for prediction. However, the above methods align features
without considering the potential gap between labels from
both domains. Moreover, they focus on aligning only time
features while ignoring the implicit frequency feature shift
(Fig. 1a). In contrast, RAINCOAT considers the frequency
feature shift to mitigate both feature and label shift in DA.

Universal Domain Adaptation. Prevailing DA methods
assume all labels in the target domain are also available in
the source domain. This assumption, known as closed-set
DA, posits that the domain gap is driven by feature shift
(as opposed to label shift). In practice, however, the label
overlap between the two domains is unknown. Thus, it is

more practical to assume the domain gap can be caused
by both feature and label shifts. In contrast to closed-set
DA, universal domain adaptation (UniDA) (You et al., 2019)
can account for label shift. UniDA categorizes target sam-
ples into either common labels (present in both source and
target domains) or private labels (present in target domain
only). UAN (You et al., 2019), CMU (Fu et al., 2020),
and TNT (Chen et al., 2022a) use sample-level uncertainty
criteria to measure domain transferability. Samples with
lower uncertainty are preferentially selected for adversarial
adaptation. However, most UniDA methods detect com-
mon samples using sample-level criteria, requiring users to
specify the threshold to recognize private labels. Moreover,
over-reliance on source supervision neglects discriminative
representation in the target domain. DANCE (Saito et al.,
2020) uses self-supervised neighborhood clustering to learn
features to discriminate private labels. Similarly, DCC (Li
et al., 2021a) enumerates cluster numbers of the target do-
main to obtain optimal cross-domain consensus clusters as
common classes. Still, the consensus clusters are not robust
enough due to challenging cluster assignments. MATHS
(Chen et al., 2022b) detects private labels via mutual nearest-
neighbor contrastive learning. In contrast, UniOT (Chang
et al., 2022) uses optimal transport to detect common sam-
ples and produce representations for samples in the target
domain. However, these methods use a feature encoder
shared across both domains even though the source and tar-
get domains are shifted. In addition, most require fine-tuned
thresholds to recognize private labels. RAINCOAT specifies
target-specific feature encoders that preserve the semantic
meaning of the target domain and makes inference without
depending on a user-specified threshold.
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3. Problem Setup and Formulation
Notation. We are given a dataset D = {(xi, yi)}ni=1

of n multivariate time series samples where i-th sample
xi ∈ RT×d contains readouts of d sensors over T time
points. Without loss of generality, we consider regular time
series — RAINCOAT can be used with techniques, such
as Raindrop (Zhang et al., 2022b) to handle irregular time
series. We use xi to denote a time series (both univariate
and multivariate). Each label yi in D belongs to the label
set C, i.e., yi ∈ C. We use Ds = {(xsi , ysi )}

ns

i=1 to denote
the source domain dataset with ns labeled samples, where
xsi is a source domain sample and ysi is the associated la-
bel. The target domain dataset is unlabeled and denoted as
Dt = {(xti)}

nt

i=1 with nt unlabeled samples. Source and
target label sets are denoted as Cs and Ct, respectively. Zero,
one or more labels may be shared between source and target
domains, which we denote as Cs,t = Cs ∩ Ct. Source and
target domains have their samples drawn from source and
target distributions, Ds ∼ ps(xs, ys) and Dt ∼ pt(xt, yt).

We consider two types of domain shifts: feature shift and
label shift. Feature shift occurs when marginal probability
distributions of x differ, ps(x) 6= pt(x), while conditional
probability distributions remain constant across domains,
ps(y|x) = pt(y|x) (Zhang et al., 2013). Label shift occurs
when marginal probability distributions of y differ, ps(y) 6=
pt(y). Feature shifts may occur in time series due to, for
example, differences in sensor measurement setup or length
of samples. A unique property of time series is that feature
shifts may occur in either the time or frequency spectrum.
The importance of modeling shifts in both the time and
frequency spectrum is discussed in later sections. Label shift
may occur as either a change in the proportion of classes in
either domain or as a categorical shift: both domains might
contain different classes in their label sets.

Problem 3.1 (Closed-set Domain Adaptation for Time
Series Classification). Given are the source and target do-
main time series datasets, Ds and Dt, whose label sets are
the same, Cs = Ct, and target labels yt are not available at
train time. RAINCOAT specifies a strategy to train a classi-
fier f on Ds such that f generalizes to Dt, i.e., it minimizes
classification risk on Dt: Exi,yi∼Dt [LC(f(xi), yi)], where
LC is a classification loss function.

In a real-world application, little information may be avail-
able on the feature or label distribution of the target domain.
Private labels in either the source or target domain may exist,
i.e., classes that are present in one domain but absent in the
other. Thus, it is desirable to relax the strict assumption of
Cs = Ct made by Problem 3.1. We denote source private
labels as C̄s = Cs \ Ct, target private labels as C̄t = Ct \ Cs,
and labels shared between domains as Cs,t = Cs ∩ Ct. We
denote the access of samples in dataset D belonging to label
set C as D[C], e.g., samples in the target domain belonging

to the common label set would be denoted as Dt[Cs,t]. Do-
mains might not have any common labels, Cs,t = ∅, leading
to the definition of universal DA.

Problem 3.2 (Universal Domain Adaptation (UniDA)
for Time Series Classification). Given our source and tar-
get domain time series datasets, Ds and Dt, where target
labels yt are not available at train time. RAINCOAT spec-
ifies a stratefy to train a classifier f on Ds such that f
generalizes to Dt, i.e., it minimizes classification risk of
a loss function LC on samples belonging to Cs,t in Dt:
Exi,yi∼Dt[Cs,t] [LC(f(xi), yi)], while identifying samples
in private target classes, xi ∼ Dt[C̄t], as unknown samples.

4. Preliminaries
Discrete Fourier Transform. Given a series sample x with
d channels and T time points, it is transformed to the fre-
quency space by applying the 1-dim DFT of length T to
each channel and then transforming it back using the 1-dim
inverse DFT, defined as:

Forward DFT : v[m] =
∑T−1
t=0 x[t] · e−i2πmt

T

Inverse DFT : x[n] =
1

T

∑T−1
t=0 v[m] · ei·2πmt

T

(1)

where T = number of points, n = current point index, m =
current frequency index, where m ∈ [0, T − 1]. We denote
the extracted amplitude and phase as a and p respectively:

a[m] =
|v[m]|
T

=

√
Re (v[m])

2
+ Im (v[m])

2

T
p[m] = atan2 (Im (v[m]) ,Re (v[m]))

(2)

where Im(v[m]) and Re(v[m]) are the imagery and real
part of the complex number, atan2 is the two-argument form
of arctan.

5. RAINCOAT Approach
We start with an overview of RAINCOAT and proceed with
(5.2) time-frequency encoding, (5.3) feature alignment, (5.4)
unknown sample detection, and (5.5) training and inference.

5.1. Overview

RAINCOAT is an unsupervised method for closed set and
universal domain adaptation in time series, addressing Prob-
lems 3.1-3.2. RAINCOAT consists of three modules: a time-
frequency encoder GTF, a classifier H , and an auxiliary
decoder UTF. Sec. 5.2 describes the encoder GTF, which
leverages both time and frequency features. Sec. 5.3 de-
scribes how Sinkhorn divergence is a suitable divergence
measurement to align the source and target domain be-
cause frequency features may not share the same support
across both domains. Sec. 5.4 motivates the correction
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step for UniDA. Sec. 5.5 describes how RAINCOAT detects
potential unknown samples through analysis of pre- and
post-correction embeddings. Finally, Sec. 5.6 provides an
overview of RAINCOAT models.

5.2. Time-Frequency Feature Encoder

We begin by highlighting the significance of frequency fea-
tures in UniDA for time series. Although various methods
have been proposed to solve the time series UniDA prob-
lem under the assumption of feature shift, none of them
explicitly address situations where changes in the frequency
domain also act as an implicit feature shift. To fill this gap,
RAINCOAT encodes both time and frequency features in
its latent representations. The source frequency and time
features are denoted as esF,i and esT,i, respectively, while
the target frequency and time features are represented as
etF,i and etT,i. For simplicity, the superscript indicating the
source or target domain is omitted in the rest of the text.

Shift of frequency features. We formalize the frequency
shift of time series as another type of feature shift. For this
purpose, we use the Fourier transform, with the possibility
of exploring other options such as wavelets left for future
work. A time series xi can be represented as a combination
of sinusoids, each with a specific frequency, amplitude, and
phase, as explained in Sec. 4. If the conditional distribu-
tions of the labels with respect to the frequency features
are equal (ps(y|DFT (xs)) = pt(y|DFT (xt))), but the do-
mains have different frequency features (p(DFT (xs)) 6=
p(DFT (xt))), then a frequency shift occurs.

Frequency features help with adaptation. Ben-David
et al.; Ben-David et al. demonstrated that the performance
of DA techniques is bounded by the divergence between
the source and target domains, and that a small feature shift
is necessary for DA techniques to be effective. However,
unsupervised DA methods for time series align only time
features (esT,i and etT,i), leading to sub-optimal performance
when the time feature shift is large. By including frequency
features in the encoderGTF, we can uncover potential invari-
ant features across domains and improve transferability. For
instance, Figure 3 illustrates the sensor readings of walking
activity from two different individuals (xsi and xti) in the
WISDM dataset (Kwapisz et al., 2011) and their correspond-
ing Fourier features (esF,i and etF,i). Using only time features
would result in poor predictions in the target domain due to
a significant time feature shift between xsi and xti. On the
other hand, frequency features from different domains do
not exhibit significant feature shifts and thus are domain in-
variant. This suggests that incorporating frequency features
can lead to more accurate predictions in the target domain
as DA aims to extract domain-invariant features. For this
reason, RAINCOAT uses both time and frequency features
in domain alignment.

Figure 3. Left: averaged sensor readings (one channel) of the walk-
ing activity collected from two persons (source and target). Right:
corresponding polar coordinates of Fourier features. Fourier fea-
tures are more domain-invariant than time features.

Frequency Feature Encoder. Inspired by Fourier neural
operator (FNO) (Li et al., 2021b), RAINCOAT applies con-
volution on low-frequency modes of the Fourier transform
of xi. We make two modifications to improve the utility
of Fourier convolution for DA: 1) Prevent Frequency Leak-
age: Discrete Fourier Transform considers inputs xi to be
periodic. Violation of such assumption results in frequency
leakage (Harris, 1978). For example, consider a single fre-
quency component input x[t] = cos(2πmt) with m = 2Hz,
which it samples over 1 second, applying DFT outputs only
one non-zero frequency bin. But if DFT is applied only
on a fraction of x[t] (0.6 seconds), it may output multiple
non-zero frequency bins. The discontinuities at the bound-
aries of the observation are responsible for such frequency
leakage, which is common in time series analysis due to the
slicing window prepossessing manner. Specifically, given
two window sliced time series xsi and xti , applying DFT (1)
could return perturbed and noisy vsi and vti which may lead
to noisy-biased domain alignment. To prevent aligning on
noisy frequency features, RAINCOAT applies a smoothing
function (cosine function) before applying DFT. 2) Consider
amplitude ai and phase pi information: Instead of using
inverse DFT to convert vi back to time-space which is an un-
necessary step for frequency feature extraction, RAINCOAT
extracts the polar coordinates of frequency coefficients to
keep both low-level (ai) and high-level (pi) semantics. The
frequency space features eF is a concatenation [ai; pi].

Now we summarize how GFT encodes time-frequency
feature from xi. Define a convolution operator “∗” and
weight matrix B, the encoder GF encodes frequency fea-
tures eF,i by: 1) Smooth: xi = Smooth(xi), 2) DFT:
vi = DFT(xi), 3) Convolution: ṽi = B ∗ vi, 4) Trans-
form: ai,pi ← ṽi(Use Eq. 2), 5) Extract: eF,i = [ai; pi]
The time features eT,i can be obtained using any existing
time feature encoder, such as CNNs. Finally, the latent
representation zi is a concatenation of frequency and time
features [eF,i; eT,i]. Details are in Appendix B.
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5.3. Domain Alignment of Time-Frequency Features

Next, we address the question of what is the appropri-
ate metric to align frequency features between esF and etF.
RAINCOAT represents the frequency features as the am-
plitude and phase, esF,i = [asi ; p

t
i], e

t
F,i = [ati; p

t
i], mean-

ing that the frequency feature shift can be represented as
ps(a

s,ps) 6= pt(a
t,pt).

The issue of disjoint support sets for frequency features.
An appropriate metric to align frequency features between
esF and etF is challenging to find. Distance measures such as
the total variation distance or Kullback-Leibler divergence
are not suitable because they are unstable when the sup-
ports of distributions are deformed and do not metricize the
convergence in law (Feydy et al., 2019), meaning that they
do not effectively capture the discrepancy when esF,i and
etF,i have disjoint support. The KL divergence, for example,
grows unbounded (KL(esF,i||etF,i)→ +∞) when etF,i and
etF,i are far apart, leading to a degradation of alignment and
early collapse. An ideal divergence measure could capture
the discrepancy even if esF,i and etF,i have disjoint support
(supp(esF,i) ∩ supp(etF,i) ≈ ∅).

The components of frequency features, amplitude a and
phase p, have different distributions. The phase p has a
uniform distribution over the range of polar angles, which
makes it easy to measure the distance between psi and pti,
bounded in the polar coordinate system pi ∈ [0, 2π). How-
ever, the amplitude a has a Rayleigh distribution with an
unlimited scale, ai ∈ [0,+∞), making it difficult to mea-
sure the distance between asi and ati using the KL divergence.
The KL divergence can not provide useful gradients when
asi are ati are far apart. This leads to a lack of alignment
when the amplitudes are far apart, as numerically verified in
Figure 5 in the Appendix.

Sinkhorn divergence solves the issue. The Sinkhorn diver-
gence is an entropy-regularized optimal transport distance
that enables the comparison of distributions with disjoint
supports. Another metric, maximum mean discrepancy
(MMD), addresses the issue of disjoint support by con-
sidering the geometry of the distributions. However, we
demonstrate that MMD has a theoretical weakness that man-
ifests as vanishing gradients or similar artifacts. To address
this, RAINCOAT aligns the source features (zsi ) and target
features (zti) by minimizing a domain alignment loss based
on Sinkhorn. Further details are provided in Appendix A.

5.4. Correction

In this section, we explain how the correction step helps
reduce negative transfer by rejecting target unknown sam-
ples xt ∼ Dt[C̄t]. The correction step updates the encoder
GTF and decoder UTF by solving a reconstruction task on
target samples xt ∼ Dt. This updated GTF repositions the

target features zti. The target features before and after the
correction step are denoted as zta,i and ztc,i, respectively.

Motivation for reconstructing xti. The cluster assump-
tion (Chapelle and Zien, 2005) holds that the input data is
separated into clusters and that samples within the same
cluster have the same label. Based on this, we argue that
preserving target discriminative features zti is important for
UniDA, because such features help generate discrimina-
tive clusters, including clusters of target unknown samples,
which improves UniDA. To do this, RAINCOAT minimizes
a reconstruction loss to adapt the feature encoder GTF and
decoder UTF. The target features zta,i before the correc-
tion step are generated by a shared encoder GTF that aligns
the source and target domains. As a result, the target fea-
tures of common samples xt ∼ Dt[Cs,t] should change less
in the latent space than those of target unknown samples
xt ∼ Dt[C̄t]. This indicates that the corrected encoder GTF
maintains the features of common target samples close to
their originally assigned label while letting the features of
target unknown samples diverge from their originally as-
signed label. RAINCOAT leverages this to detect and reject
target unknown samples, which we discuss next.

5.5. Inference: Detect Target Private Samples

RAINCOAT detects target unknown samples xt ∼ Dt[C̄t]
by determining the movement of target features before and
after the correction step. It assumes that when the target
domain contains unknown labels, the distribution of the
movement will exhibit a bimodal structure.

For brevity, the feature vector zti is used as an input to
H , which consists of prototypes for each class W =
[w1,w2, · · · ,wC ]. Denote the distance (cosine similar-
ity) of zti to its assigned prototype c as d(zti,wc). Cosine
similarity is a reasonable choice because the cross entropy
(CE) loss encourages angular separation. It can be inter-
preted as aligning the feature vectors zti along its assigned
class prototype. The cosine similarity in the form of the
dot product gives CE an intrinsic angular property, which
is observed in (3) where features naturally separate in the
polar coordinates with CE only. Given a target feature zti
and true label yi = c, the cross entropy can be expressed as:

LCE(ŷ, y) = − log
exp(wT

c zt
i)∑

j exp(wT
j zt

i)
∝
∑
j 6=c

exp
(
wT
j zti −wT

c zti
)

∝
∑
j 6=c

exp
(
‖zti‖2 ‖wj‖2 cos (θj)− ‖zti‖2 ‖wc‖2 cos (θc)

)
As a result, if the target feature zti is close to its proto-
types, then d(zti,wc) will be small, and vice versa. Then
RAINCOAT measures the movement by calculating the
absolute difference of target features’ distance to the as-
signed prototype before and after correction given by daci =
|d(zta,i,wc)− d(ztc,i,wc)|.
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Algorithm 1 Overview of RAINCOAT

Input: datasetDs ,Dt ; epochs E1, E2; time-frequency feature
encoder, GTF, and decoder, UTF (Alg. 2); prototype classifier H

Stage 1: Alignment (introduced in 5.2 , 5.3))
for E1 epochs do

Extract zsi , z
t
i ← GTF(x

s
i ), GTF(x

t
i)

LA ← SINKHORN(zsi , z
t
i) (Alg. 3)

LR ← |xs
i − UTF(z

s
i )|

LC ← CE(ysi , H(zsi ))
Update UTF, GTF, H with∇(LA + LR + LC)

end for
Stage 2: Correction (introduced in 5.4)
Extract features: zta,i ← GTF(x

t
i)

Distance to prototypes: dalign ← d(zta,i, H)
for E2 epochs do
LR ← |xt

i − (UTF ◦GTF)(x
t
i)|

Update UTF, GTF with∇LR

end for
Extract post-correction: ztc,i ← GTF(x

t
I)

Re-compute: dcorrect ← d(ztc,i, H)

Stage 3: Inference (introduced in 5.5)
daci = |d(zta,i,wc)− d(ztc,i,wc)|
for c in Cs do

p← Bimodality Test
if p < 0.05 then . Bimodal structure detected

µcommon
c , µunknown

c = CLUSTER(dac|ŷ = c)
end if

end for

Next, RAINCOAT detects if there are private target samples
in each class by first running a bimodality test on each group
of Cs. If the bimodality test tells us dac has two modalities,
it then trains a 2-mean cluster to fit the distribution of dac.
For each class, after we obtain the centroid µ1, µ2, where
µ1 < µ2, RAINCOAT takes µ2 as our threshold to reject
“unknown” target samples.

5.6. Overview of RAINCOAT Models

During alignment, RAINCOAT trains a classifier H using
labeled source dataset Ds and a feature encoder GTF and
decoder UTF using both Ds and Dt. At the same time,
it aligns target features zti with source features zsi using
Sinkhorn divergence. The overall loss function in this step
has three terms. First, the sinkhorn distance LA(zti, z

s
i )

urges the target features zti to be aligned with source features
zsi . Second, the reconstruction loss LR(xsi , UTF(GTF(xsi )))
promotes learning of semantic features of Ds. Third, the
classification loss LC(H(GTF(xsi )), y

s
i ) guides the model

to classify samples correctly. In summary, the loss in this
step is defined as L = LA + LR + LC .

In this step, target common samples could be classified
correctly, and target unknown samples will be misclassi-
fied because the GTF aligns all samples without consid-
ering the label shift. The correct step aims to correct
such negative transfer (target unknown samples) by exploit-

ing target-specific discriminative features by minimizing
LR(xti, UTF(GTF(xti))).

In the inference step, only the trained classifier H and fea-
ture encoder GTF before and after correction are utilized.
When a target samples xti to inference is given, RAINCOAT
calculates the movement using daci equation followed by
a bi-modality test and binary classification (known or un-
known) is necessary. An overview of RAINCOAT is in Alg. 1;
a detailed overview is in Appendix and Alg. 4.

6. Experiments
6.1. Experimental Setup

Baselines for closed-set DA. We consider 8 closed-set DA
methods. For baselines are general unsupervised DA meth-
ods: deep correlation alignment (CORAL) (Sun and Saenko,
2016), CDAN (Long et al., 2018b), decision-boundary it-
erative refinement training with a teacher (DIRT-T) (Shu
et al., 2018), and AdaMatch (Berthelot et al., 2022). We
also consider four unsupervised DA methods for time series:
CODATS (Wilson et al., 2020), adversarial spectral kernel
matching for unsupervised time series domain adaptation
(AdvSKM) (Liu and Xue, 2021b), and CLUDA (Ozyurt
et al., 2022). We additionally consider source-domain-
only training (no transfer) implemented by (Ragab et al.,
2022). Baselines for uniDA. We consider 4 state-of-the-
art methods that can reject unknown samples: include
UAN (You et al., 2019), DANCE (Saito et al., 2020),
OVANet (Saito and Saenko, 2021), and UniOT (Chang et al.,
2022). Datasets. We consider five benchmark datasets from
three distinct problem types: (1) human activity recognition:
WISDM (Kwapisz et al., 2011), HAR (Anguita et al., 2013),
HHAR (Stisen et al., 2015); (2) mechanical fault detection:
Boiler (Shohet et al., 2019); and (3) EEG prediction: Sleep-
EDF (Goldberger et al., 2000). Further details on datasets
are given in Appendix C.1. Setup for closed-set DA. In-
dividual, participant or device IDs define domains in the
above datasets. Following existing DA research on time se-
ries (Ozyurt et al., 2022; Wilson et al., 2020), we select ten
pairs of domains to specify source 7→ target domains, except
for the Boiler dataset where we consider all possible config-
urations (i.e., 6 scenarios). Setup for uniDA. The WISDM
dataset is the most challenging because of considerable label
shift across participants, e.g., the source participant 29 does
not perform the activity ‘jog’ at all, but the target participant
28 performs ‘jog’ 33% of the time. To this end, we consider
WISDHM to examine the performance of in-dataset UniDA.
In addition, both HHAR and WISDM contain sensor mea-
surements, and they each have one private label (‘bike’ and
‘jog’), making them appropriate for cross-dataset evaluation
of UniDA. Evaluation. We report accuracy and macro-F1
calculated using target test datasets. Accuracy is computed
by dividing the number of correctly classified samples by
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the total number of samples. macro-F1 is computed using
the unweighted mean of all the per-class F1 scores. It treats
all classes equally regardless of their support values. For
UniDA, the trade-off between correctly predicting common
vs. private classes on the target domain is captured using
H-score, defined as the harmonic mean between accuracy
on common classes CAc and accuracy on private classes
CAu, H-score = (2CAcCAu)/(CAc + CAu).

6.2. Results

Q1: How effective is RAINCOAT for closed-set DA? Fig-
ure 4 shows the average accuracy and standard deviation of
each method for selected source-target domain pairs on all
datasets. Full results are given in Table 10 (accuracy) and
Table 11 (Macro-F1). Overall, RAINCOAT has won 5 out
of 5 tests (2 metrics in 5 datasets) and makes an average
improvement of accuracy (6.77%) and Macro-F1 (9.00%)
over with the strongest baseline across datasets. Specifi-
cally, RAINCOAT improves prediction accuracy by 8.65%
on HAR, 5.48% on HHAR, 5.8% on WISDM, 2.81% on
Sleep-EDF, and 10.43% on Boiler over the strongest base-
line on each dataset respectively. In particular, RAINCOAT
outperforms CLUDA, the state-of-the-art closed-set DA
method for time series, by 8.23% (accuracy) and 10.00%
(Macro-F1) averaged over all datasets. RAINCOAT captures
and aligns time-frequency features across domains which
improves knowledge transfer among time series in the pres-
ence of feature shift.

Q2: How effective is RAINCOAT for UniDA? We report
the average H-score in Table 1 and the average accuracy
results in Appendix 12. Results show that RAINCOAT con-
sistently outperforms baselines and achieves state-of-the-art
results on DA for time series under both feature and la-
bel shift. We note that changes in features and labels of
time series data are different from other types of data such
as images, which cause a decrease in the performance of
baseline models. However, RAINCOAT has a significant
average improvement over the strongest baseline by 16.33%
(H-score) across datasets with large gaps. This can be at-
tributed to its time-frequency feature encoder and detecting
unknown samples via discriminative features learned using
the ’align-and-correct’ strategy.

Additional analyses. Next, we study the following ques-
tions Q3: How effective is the time-frequency encoder?
Q4: Is Sinkhorn divergence a better measurement for our
time-frequency feature? Q5: Will the correct step decrease
the perform when there is no label shift? We evaluate how
relevant the model components are for effective DA. We
perform the ablation study using WISDM since it is a more
challenging dataset and present results in Table 2. When no
component is used (1st row in Table 2), it refers to a source-
only model. When Sinkhorn is not used (2nd,5th row in Table

Table 1. H-score of UniDA using WISDM, WISDM→HHAR,
HHAR→WISDM, Shown: mean H-score over 5 independent runs.
See Table 12 in Appendix for additional results.

Sour 7→ Tar UAN DANCE OVANet UniOT RAINCOAT

WISDM 3 7→ 2 0 0 0.07 0.11 0.51
WISDM 3 7→ 7 0 0 0.2 0.22 0.52
WISDM 13 7→ 15 0 0.14 0.33 0.36 0.50
WISDM 14 7→ 19 0.24 0.28 0.31 0.28 0.55
WISDM 27 7→ 28 0.07 0.07 0.23 0.35 0.59
WISDM 1 7→ 0 0.41 0.39 0.38 0.40 0.43
WISDM 1 7→ 3 0.46 0.49 0.45 0.43 0.51
WISDM 10 7→ 11 0 0 0.34 0.41 0.53
WISDM 22 7→ 17 0.13 0 0.32 0.41 0.52
WISDM 27 7→ 15 0.43 0.51 0.46 0.52 0.57
WISDM Avg 0.17 0.19 0.31 0.35 0.52
WISDM Std of Avg 0.04 0.05 0.04 0.05 0.04

W→H 4 7→ 0 0 0.14 0.15 0.19 0.49
W→H 5 7→ 1 0.24 0.22 0.25 0.28 0.53
W→H 6 7→ 2 0.14 0.12 0.20 0.25 0.55
W→H 7 7→ 3 0 0.15 0.04 0.14 0.51
W→H 17 7→ 4 0.35 0.28 0.41 0.45 0.57
W→H 18 7→ 5 0.20 0.27 0.29 0.32 0.47
W→H 19 7→ 6 0.19 0.22 0.25 0.28 0.51
W→H 20 7→ 7 0.11 0.17 0.35 0.41 0.49
W→H 23 7→ 8 0.21 0.28 0.47 0.51 0.57
W→H Avg 0.16 0.21 0.24 0.28 0.52
W→H Std of Avg 0.03 0.02 0.03 0.02 0.02

H→W 0 7→ 4 0.23 0.28 0.33 0.37 0.45
H→W 1 7→ 5 0.19 0.31 0.38 0.42 0.47
H→W 2 7→ 6 0.04 0.17 0.23 0.29 0.39
H→W 3 7→ 7 0.25 0.32 0.34 0.40 0.42
H→W 4 7→ 17 0.31 0.39 0.41 0.40 0.51
H→W 5 7→ 18 0.28 0.34 0.37 0.36 0.48
H→W 6 7→ 19 0.42 0.42 0.46 0.47 0.49
H→W 7 7→ 20 0.39 0.41 0.41 0.44 0.52
H→W 8 7→ 23 0.19 0.28 0.32 0.35 0.46
H→W Avg 0.26 0.32 0.36 0.39 0.47
H→W Std of Avg 0.05 0.05 0.03 0.04 0.03
Higher H-score is better. Best performance is indicated in bold.

2), we use MMD to align features. It can be observed that
using the frequency encoder alone (2nd row) results in per-
formance improvement (accuracy) of 9.44% for Closed-set
DA and 2.33% for UniDA on average. It demonstrates the
effectiveness of a frequency encoder for handling the feature
shift of time series. By comparing 2nd row with 4th row, we
observe Sinhorn Divergence brings consistent improvement
for both Closed-set DA (1.02%) and UniDA (1.11%), which
demonstrates the benefit of Sinkhorn Divergence for align-
ing frequency features When the frequency encoder (2nd

row) is further equipped with a correction step (5th row), it
verifies the effectiveness of the correction step when there
is a label shift. By comparing the 5th row with the 2nd and
4th row, we find that the correction step does not lead to a
performance drop for Closed-set DA. This finding indicates
that RAINCOAT is suitable for resolving both feature and
label shifts, even if no prior information on feature and label
shifts is given.

7. Conclusion
This paper presents a new domain adaptation approach,
named RAINCOAT, for time series data. It tackles domain
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Figure 4. Average performance of multiple Closed-set DA methods across multiple datasets. RAINCOAT consistently outperforms all
other methods in accuracy on test sets drawn from the target domain dataset.

Table 2. Ablation analysis of RAINCOAT. Specifically, the frequency encoder, Sinhorn Alignment, and Correct Step modules are shown
below. When no component is checked (first row), it refers to the source-only model. We evaluate RAINCOAT on both closed-set and
universal DA and also include average accuracy across all 10 scenarios (source 7→ target domain) on the WISDM dataset.

Element of RAINCOAT Closed Set DA Universal DA
Frequency Encoder Sinkhorn Correct 4 7→ 15 7 7→ 30 12 7→ 17 12 7→ 19 Avg (10 scenarios) 1 7→ 0 10 7→ 11 22 7→ 17 27 7→ 15 Avg (10 scenarios)

1 79.86 89.32 71.53 54.29 65.78 64.58 54.38 42.98 38.04 40.84
2 X 89.72 90.12 84.34 83.87 75.22 70.84 65.04 44.81 54.39 42.97
3 X 82.43 89.88 83.14 76.74 69.66 65.13 57.44 45.14 42.42 41.25
4 X X 95.34 92.36 86.84 84.11 76.24 73.68 72.37 40.79 58.17 44.08
5 X X 90.84 90.01 86.31 79.84 76.04 74.34 66.10 48.01 57.22 46.52
6 X X X 97.91 91.28 89.80 85.00 76.60 82.57 76.36 48.16 66.42 53.51

adaptation for time series under both feature and label shifts.
By utilizing features from both time and frequency space,
aligning them across domains, and correcting misalign-
ments, RAINCOAT enhances transferability and improves
label detection. Additionally, RAINCOAT detects label shifts
by comparing discriminative features in the target domain.
The results from experiments on five datasets show the effec-
tiveness of RAINCOAT, achieving up to 6.77% improvement
in closed-set domain adaptation and 16.33% improvement
in universal domain adaptation.
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A. Domain Align of Time-Frequency Feature Cont’d
We first show the distributions of Fourier amplitude and phase.

f(a, p) = a× f(x = a sin p, y = a cos p)

= a× 1
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= Rayleigh (a | 1) ·U(p | 0, 2π)

(a > 0, 0 6 p 6 2π).

(3)

We can observe the amplitude can arbitrarily large and thus as and at might have disjoint set when the frequency feature
shift is large. As a result, we need to consider a measurement that can measure distance of two arbitrary distributions.

Sinkhorn Divergence. We consider two discrete probability measures represented as sums of weighted Dirac atoms:

µ =

n∑
i=1

µiδzi and ν =

m∑
j=1

νjδzj (4)

Here, µ ∈ Rn+ and ν ∈ Rm+ are non-negative vectors of length n and m that sum up to 1. We denote their probabilistic
couplings, set Π and cost matrix C, as:

Π(µ,ν) =
{
P ∈ Rn×m+ ,P1m = µ,P>1n = ν

}
C = (Cij) ∈ Rn×m+ , Cij = ‖zi − zj‖p

(5)

Sinkhorn divergence (Cuturi, 2013; Cuturi and Peyré, 2016) was proposed as an entropic regularization of the Wasserstein
distance (Fournier and Guillin, 2013) that interpolates between the pure OT loss for η = 0 and MMD (Gretton et al., 2012)
losses for η → ∞ and offers a computationally efficient way to approximate OT costs. It thus provides a good tradeoff
between (a) favorable sample complexity and unbiased gradient estimates, and (b) non-flat geometry of OT (Genevay et al.,
2018; Feydy et al., 2019). The Sinkhorn divergence between µ and ν is given by

Sη(µ,ν) = min
P∈Π(µ,ν)

{〈C,P〉+ ηH(P)}, (6)

where H(P ) =
∑
i,j Pij log(Pij) is the negative entropy and η > 0 is a regularization parameter. By making η higher, the

resulting coupling matrix will be smoother, and as η goes to zero it will be sparser, with the solution being close to that of
the original optimal transport problem. The well-known Sinkhorn algorithm for finding such a coupling matrix in a efficient
manner is provided in Alg. 3.

Optimal transport losses have appealing geometric properties, but it takes O(n3 log n) to compute. On the other hand,
discrepancy metrics such as MMD is geometry-aware and can scale up to large batches with a low sample complexity.
But we realize that measuring discrepancy of frequency features using Sinkhorn has a stronger Gradient than MMD.
Specifically, consider MMD with a RBF kernel, the gradient of MMD w.r.t a particular sample zs is∇zsDMMD(Zs,Zt) =

1
N2

∑
j k
(
zsi , z

s
j

) zs
j−z

s
i

σ2 − 2
NM

∑
j k
(
zsi , z

t
j

) zt
j−z

s
i

σ2 . When minimizing MMD, the first term is a repulsive term between
the samples from p(zs), and the second term is an attractive term between the samples from p(zs) and p(zt). The L2 norm
of the term between two samples zs and zt is small if ‖zs − zt‖2 is either too small or too large. This is saying if p(zs)
is far away from p(zt), the model will not receive strong gradients (bounded by a small norm). From another viewpoint,
(Feydy et al., 2019) demonstrated that the norm of MMD strongly relies on the smoothness of the reference measure and
tends to have vanishing gradients when points of the measures’ support are disjoint. Now let’s look at gradients of Sinkhorn.
Denote a Lipschitz cost function as C(zs, zt). For η > 0, the associated Gibbs kernel is defined through

kη : (zs, zt) ∈ Zs ×Zt 7→ exp(−C(zs, zt)/η)
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(a) (b) (c) (d)

Figure 5. (a) Rayleigh distributions with different scale (b) JSD and KLD (c) Rayleigh distributions with different location (d) JSD and
KLD. MSE explode quickly. From b, we can see KL alleviates this problem but it’s still not bounded. From c, we can tell both JS and KL
can not provide useful gradients when loc shift is large. It can be problematic when the gap is large and this observation is reasonable
because JSD can not provide usable gradients when distributions are supported on non-over-lapping domains. See (Kolouri et al., 2019).
Wasserstein distance seems to have a linear relationship to shift, but it’s not bounded as well.

(Feydy et al., 2019) show that the sinkhorn divergence gradient w.r.t a particular sample zsi is largely determined by the
magnitude of

η
(
log(exp(−C(zsi , z

s
j))/η))− log(exp(−C(zsi , z

t
j))/η))

)
. Different from MMD, the cost function C(zs, zt) replaces the Euclidean distance with an absolute distance |zsi − ztj |.
Then, the gradient is always strong regardless of the closeness between zsi and ztj . To numerically verify this claim, we
compare the magnitude of the gradients of different shift in Figure 5. It shows Sinkhorn has stronger gradients.

B. Network and Detailed Algorithms
Encoder. What has not yet been emphasized is that practical time series are comprised of a mixture of many (possibly
infinite) oscillations at different frequencies. RAINCOAT considers encoding both time and frequency features. We use DFT
in our work and leave other appoaches for future work. RAINCOAT first smooth input xi to prevent frequency leakeage by
applying a smoothing function. There are many choices of such smoothing functions, but many of the differences are so
subtle as to be insignificant in practice. We use the either cosine or Hann window w as a smoothing function (as known as
tapering function) formed by using a raised cosine with non-zero endpoints, optimized to minimize the nearest side lobe. It
is defined as:

w[n] = 0.5− 0.5 cos

(
2πn

N − 1

)
0 ≤ n ≤ N − 1 (7)

After smoothing, DFT is applied on the smoothed xi and return vi. The DFT implementation in Eq. (1) is inefficient for
lengthy signals, and can be scaled up using the fast Fourier transform (FFT) (Cooley and Tukey, 1965). The Fourier domain
representation of any real signal satisfies the Hermitian property: v[m] = v[−m], meaning that we can save half of the
memory by saving a one-sided representation containing only positive frequencies. Complete description of DFT is in Rao
and Yip (2000).

Next, RAINCOAT applies a convolution operator on low frequency modes of vi, which is similar to existing work in neural
network based frequency analysis. The intuition behind this is that by acting on low-frequency modes, the operator smooths
out high frequency details which tend to be less structured than low frequency components. By doing so, it tends to preserve
the low rank structure of signals, which aids alignment. Different from existing works (Li et al., 2021b; Zhou et al., 2022),
RAINCOAT does not add a linear transform because this step is used for preserving time space features while RAINCOAT
adopts a time feature encoder. Then, we extract the amplitude and phase from the output of the convolution layer as we
show that such features (in polar coordinates) are more domain-invariant and inject a useful inductive bias to the model.
Last, the extracted frequency features are concatenated with the time features. There are many potential variants such as
manifold alignment and self-attention to fuse features from two modalities. We leave it as our future work.

Overall, given a time series x, the frequency-space feature extraction is conducted as follows. It is first multiplied by (7)
to prevent frequency leakage. A convolution is then applied on the smoothed x. Next, the frequency-space feature eF
is obtained by concatenation of results using (2). Regarding the time-space feature extraction, any appropriate network
is suitable. We adopt CNN in this work for fair comparison with existing works and demonstrated performance. The
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pseudocode for time-frequency feature extraction is presented in Alg. 2

Fourier Neural Operator. Fourier neural operator (FNO) (Li et al., 2021b) perform temporal predictions by combining the
Fourier transform with neural networks. Define a convolution operator “∗” and weight matrix B , the Fourier layer in FNO
can be summarized as:

(1) DFT v = [DFT(x)]
(2) Frequency Convolution ẽF = B ∗ v
(3) IDFT x̃ = [IDFT(ẽF )]

FNO then adds the output of the Fourier layer with the bias term (a linear transformation) and applies the activation function.
RAINCOAT differs a lot from FNO. The only shared component is the frequency convolution, as we mentioned previously.

Decoder. To learn discriminative features, RAINCOAT learns a decoder through a reconstructon task. We consider a relative
simple architecture in this work. Given a latent representation zi either from source or target, we split it back to frequency
features and time features. Then it is easy to reconstruct x by perform reconstruction on both eF and eT. We use inverse
DFT on eF and regular de-convolution network on eT. Then RAINCOAT adds them together as x̂. We use L1 loss to train
the reconstruction task.

Prototypical Classifier. For the classifier H , we adopt a prototypical classifier from (Kim et al., 2019). The normalized
feature vector z is used as an input to H which consists of weight vectors W = [w1,w2, · · · ,wC ] where C represents the
number of classes. The weight vectors can be regarded as estimated prototypes for each class.

B.1. Detailed Algorithm

In this section, we provide details algorithm for RAINCOAT.

Algorithm 2 Time-Frequency Feature Encoder and Decoder, Domain Alignment via Sinkhorn Divergence
1: function TIME-FREQ ENCODER GTF(x)
2: x← smooth(x), as shown in (7)
3: vF ← DFT (x)
4: ← SPEC-CONV(vF)
5: a, p← vF|, atan2(Im(xF), Re(xF))
6: eF ← CONCAT(a,p)
7: eF ← TIME-CONV(x)
8: z← CONCAT(eF, eF)
9: return z

10: end function
11:
12: function TIME-FREQ DECODER UT F (z)
13: eT , eF ← z
14: x̄T , x̄F ← CONVTRAN1D(eT ), IFFT(eF )
15: x̄← x̄T + x̄F ,
16: return x̄
17: end function

C. Additional Experimental Results
C.1. Dataset Details

We consider 5 benchmark datasets. (1) WISDM (Kwapisz et al., 2011) contains 3-axis accelerometer measurements from
30 participants. The measurements are collected at 20 Hz, and we use non-overlapping segments of 128-time steps to predict
the activity (label) of each participant during each time segment. There are 6 labels: walking, jogging, sitting, standing,
walking upstairs, and walking downstairs. (2) Boiler (Shohet et al., 2019) consists of sensor data from three boilers from
2014/3/24 to 2016/11/30. Each boiler is considered its own domain. The learning task is to detect the mechanical fault
of the blowdown valve of each boiler. (3) HAR (Anguita et al., 2013) contains measurements of 3-axis accelerometer,
3-axis gyroscope, and 3-axis body acceleration from 30 participants. The measurements are collected at 50 Hz, and we use
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Algorithm 3 Simplified illustration of computation of Sinkhorn Divergence (Sinkhorn, 1964)
1: function SINKHORN DIVERGENCE(zs, zt)
2: a, b← 1n/n,1n/n
3: C ← ‖zs − zt‖p
4: K ← exp(−C/η)

5: for j ← 1 to J do
6: a(j) ← µ�Kb(j−1); b(j) ← ν �K>a(j−1)

7: end for
8: Lalign←

∑
Cdiag(a(j))Kdiag(b(j−1))

9: return Lalign
10: end function

Method No. of HP Threshold
UAN 2 Validated
CMU 3 Validated
USFDA 3 Synthesize unknown samples
ROS 4 Reject 50% of target data
DANCE 3 Decide by No. of classes
OVANet 1 loss function trade off
UniOT 1 partial optimal transport
Ours 0 Radius learned by source

Table 3. Reuse table in OVANet (Saito and Saenko, 2021), Comparison of open-set and universal DA methods. HP denotes hyper-parameter

non-overlapping segments of 128-time steps to classify time series into six activities: walking, walking upstairs, walking
downstairs, sitting, standing, and lying down. (4) HHAR (Stisen et al., 2015) contains 3-axis accelerometer measurements
from 30 participants. The measurements are collected at 50 Hz, and we use non-overlapping segments of 128-time steps
to classify time series into six activities: biking, sitting, standing, walking, walking upstairs, and walking downstairs. (5)
Sleep-EDF (Goldberger et al., 2000) contains electroencephalography (EEG) readings from 20 healthy individuals that are
to be classified into five sleep stages: wake (W), non-rapid eye movement stages (N1, N2, N3), and rapid eye movement
(REM). Following prior research (Eldele et al., 2021), we perform the analyses using the Fpz-Cz channel. Dataset statistics
are in Table 4.

Table 4. Summary of datasets. Further details about datasets and selected source 7→ target adaptation scenarios are in Appendix C.2.

Dataset #Subjects #Channels Length # Class #Train # Test

HAR 30 9 128 6 2300 990
HHAR 9 3 128 6 12716 5218
WISDM 30 3 128 6 1350 720
Sleep-EDF 20 1 3000 5 14280 6310
Boiler 3 20 36 2 160719 107400

C.2. Experimental Details

In this section, we provide details on the implementations. We implemented RAINCOAT and all the baseline methods in
PyTorch base on here. We run test on a NVIDIA GeForce RTX 3090 graphic card. We implement the time feature extracto
via a convolutional network (CNN) (Ragab et al., 2022). This configuration remains the same across all methods so that the
difference in prediction performance is attributed to algorithm. When training the model, we use Adam for each method
with carefully tuned learning rates for each method. Hyperparamters of Adam are selected after grid search on source
test datasets with a range from 1× 10−4 to 1e− 1. We report several key hyperparamters in tables 5,6,7,8, and 9. Other
hyperparamters are included in the supplementary material. Here, we list several key hyperparameters for RAINCOAT.

https://github.com/emadeldeen24/AdaTime
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Algorithm 4 Detailed overview of RAINCOAT

Input: dataset Ds , Dt ; epochs E1, E2

Initialization: Parameter Γ for Time-Frequency Feature Encoder GT F , Φ for Time-Frequency Feature Decoder UT F ,
weight vectors W = [w1, w2, · · · , wCs ] for prototypical classifier,.
Stage 1: Align, introduced in Section 5.2 5.3
for e← 1 to E1 do

while Dt not exhausted do
Sample xs, ys from Ds, xt from Dt
Extract: zs ← GT F (xs) (use algorithm 2)
Extract: zt ← GT F (xt) (use algorithm 2)
Reconstruct x̄s ← UT F (zs)
Compute:Lalign = SINKHORN(zs, zt, ε)

. in algorithm 2
Compute:Lrecon = |xs − x̄s|
Predict: ŷs = CLASSIFIER(zs)
Compute Lcls = CE(ys, ŷs)
Ltotal = Lrecon + Lalign + Lcls
Update Γ,Φ,W with∇Ltotal

end while
end for

Stage 2: Correct, introduced in Sec. 5.4
Compute distance to prototypes before correct:
dalign = Zs·W

‖Zs‖‖W‖
for e← 1 to E2 do

while Dt not exhausted do
Sample xt from Dt
Extract: zt ← GT F (xt) (use algorithm 2)
Reconstruct x̄t ← UT F (zt)
Compute:Lrecon = |xs − x̄s|
Update Γ,Φ with∇Lrecon

end while
end for
Compute distance to prototypes after correct:
d(Z,W) = Zs·W

‖Zs‖‖W‖

Stage 3: Inference, introduced in Sec. 5.5
Compute drift during correct:
drift = |dcorrect − dalign|

for c← 1 to C do
Compute DIP statistic: dip = DIP({drift}y=c)
if dip < 0.05 then . Two modalities detected

µcommonc , µprivatec = K-MEANS({drift}y=c)
end if

end for
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Method Epoch Batch Size Learning rate
CoDATS 50 32 1e− 3
AdvSKM 50 32 5e− 1
CLUDA 50 32 1e− 2
DIRT-T 50 32 5e− 4

AdaMatch 50 32 3e− 3
DeepCoral 50 32 5e− 3

CDAN 50 32 1e− 2
RAINCOAT 50 32 5e− 4

Table 5. Experimental details for HAR

Hyperparameter Epoch Batch Size Learning rate

CoDATS 50 128 1e− 2
AdvSKM 50 128 5e− 4
CLUDA 50 128 5e− 4
DIRT-T 50 128 5e− 4

AdaMatch 50 128 5e− 4
DeepCoral 50 128 5e− 4

CDAN 50 128 1e− 3
RAINCOAT 50 128 1e− 3

Table 6. Experimental details for EEG

RAINCOAT uses a Fourier Frequency modes of 64, 200, 64, 64, 10 for HAR, EEG, HHAR, WISDM and Boiler respectively.
For the regularization term used in Sinkhorn divergence, we use 1e− 3 consistently across datasets and experiments.

C.3. Full results of Closed-Set DA

Full tables of results for Closed-Set DA experiments are provided in two separate tables defined by metric: Table 10 shows
accuracy scores and Table 11 shows Macro-F1 scores. We can observe that RAINCOAT consistently outperforms baseline
across all datasets in terms of two metrics.

C.4. Full results of UniDA

Full tables of results for UniDA experiments are provided in two separate tables defined by metric: Table 12 shows accuracy
scores and Table 13 shows H-scores (ref. Sec. 6.1). We can note that accuracy is not an proper metric for evaluating UniDA
since it does not reflect the real capability of detecting target unknown samples. It can be high or low due to the class
imbalance issue. Overall, RAINCOAT also consistently outperforms baselines for three UniDA settings considered in this
work.

Hyperparameter Epoch Batch Size Learning rate

CoDATS 50 64 1e− 3
AdvSKM 50 64 3e− 4
CLUDA 50 64 1e− 3
DIRT-T 50 64 1e− 3

AdaMatch 50 64 2e− 3
DeepCoral 50 64 5e− 2

CDAN 50 64 1e− 3
RAINCOAT 50 64 1e− 3

Table 7. Experimental details for WISDM
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Hyperparameter Epoch Batch Size Learning rate

CoDATS 50 32 1e− 3
AdvSKM 50 32 3e− 4
CLUDA 50 32 1e− 3
DIRT-T 50 32 1e− 3

AdaMatch 50 32 3e− 3
DeepCoral 50 32 5e− 4

CDAN 50 32 1e− 3
RAINCOAT 50 32 1e− 3

Table 8. Experimental details for HHAR

Hyperparameter Epoch Batch Size Learning rate

CoDATS 30 32 5e− 4
AdvSKM 30 32 1e− 3
CLUDA 30 32 1e− 3
DIRT-T 30 32 1e− 3

AdaMatch 30 32 3e− 3
DeepCoral 30 32 5e− 4

CDAN 30 32 1e− 3
RAINCOAT 50 32 1e− 3

Table 9. Experimental details for Boiler
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Table 10. Prediction accuracy for each dataset between various subjects. Shown: mean Accuracy over 5 independent runs.
Sour 7→ Tar w/o UDA CDAN DeepCORAL AdaMatch DIRT-T CLUDA AdvSKM CoDATS RAINCOAT

HAR 2 7→ 11 76.56 85.42 90.63 75.00 80.21 81.77 98.96 68.23 100
HAR 6 7→ 23 67.36 87.50 84.38 80.20 74.31 92.01 88.54 74.31 95.83
HAR 7 7→ 13 83.68 92.01 87.50 85.76 82.99 99.31 92.71 77.43 100
HAR 9 7→ 18 24.65 58.86 46.88 56.59 59.03 67.71 74.65 63.89 75.69
HAR 12 7→ 16 61.11 66.67 65.28 49.65 67.01 65.28 69.44 66.32 86.52
HAR 13 7→ 19 88.89 96.52 95.49 94.79 99.30 94.44 93.05 94.09 100
HAR 18 7→ 21 100 100 100 100 98.61 98.96 100 99.65 100
HAR 20 7→ 6 94.10 95.13 95.49 84.37 92.36 97.22 85.41 70.49 93.41
HAR 23 7→ 13 71.18 82.64 69.79 68.75 74.72 72.92 79.51 56.25 86.52
HAR 24 7→ 12 83.68 93.40 87.50 70.83 94.27 99.31 96.87 82.81 93.75
HAR Avg 75.12 85.78 82.01 76.07 83.26 85.53 83.26 75.54 94.43
HAR Std of Avg 0.98 0.91 1.09 1.77 2.78 1.78 2.79 3.31 1.32

HHAR 0 7→ 2 64.51 76.19 84.23 84.78 77.83 79.84 78.94 79.61 87.72
HHAR 1 7→ 6 70.63 92.57 90.14 92.31 88.54 93.40 87.91 90.90 93.33
HHAR 2 7→ 4 45.42 52.57 47.08 54.50 50.69 45.90 52.57 60.07 63.75
HHAR 4 7→ 0 32.81 29.09 28.13 36.45 32.22 38.84 33.49 21.80 46.46
HHAR 4 7→ 5 78.32 97.27 90.49 78.45 93.16 94.08 92.64 97.66 98.05
HHAR 5 7→ 1 90.63 96.16 89.91 94.20 91.86 95.57 92.71 97.66 98.25
HHAR 5 7→ 2 25.67 35.04 38.39 41.96 38.62 33.93 36.53 41.44 42.63
HHAR 7 7→ 2 32.37 37.05 34.45 37.65 38.10 37.80 39.95 38.54 43.32
HHAR 7 7→ 5 39.26 75.26 55.73 63.80 72.46 75.26 65.49 58.15 84.17
HHAR 8 7→ 4 62.92 96.11 76.88 64.69 65.83 96.11 83.75 97.01 93.75
HHAR Avg 54.25 68.73 68.03 65.91 64.99 68.73 66.41 68.71 74.21
HHAR Std of Avg 1.31 1.52 0.99 1.41 2.13 0.69 0.30 0.88 0.72

WISDM 2 7→ 32 81.16 89.37 87.92 74.39 77.78 73.91 70.83 77.29 79.71
WISDM 4 7→ 15 79.86 65.97 62.50 78.47 70.83 67.36 95.85 70.83 97.91
WISDM 7 7→ 30 89.32 84.79 91.26 89.64 90.61 86.40 93.85 83.20 91.28
WISDM 12 7→17 71.53 70.48 79.86 73.26 70.20 65.97 77.08 70.17 89.80
WISDM 12 7→19 54.29 51.01 51.77 55.30 51.51 49.24 47.47 47.47 85.00
WISDM 18 7→20 83.74 88.62 64.23 75.20 85.36 83.74 81.30 76.01 92.23
WISDM 20 7→30 67.96 77.02 81.88 74.76 71.84 72.49 21.28 82.85 91.66
WISDM 21 7→31 21.29 46.58 54.62 31.32 54.41 49.97 44.45 52.61 59.09
WISDM 25 7→29 26.11 44.33 53.89 57.78 60.04 35.00 74.79 53.89 82.97
WISDM 26 7→2 82.52 83.33 77.44 87.20 66.46 86.47 74.95 83.29 83.50
WISDM Avg 65.78 70.05 70.80 69.79 69.62 67.04 66.97 70.66 76.60
WISDM Std of Avg 1.92 1.01 1.16 1.01 1.41 0.91 1.84 0.88 0.73

Sleep-EDF 0 7→ 11 55.60 68.94 57.22 63.86 65.88 57.87 56.51 69.53 74.41
Sleep-EDF 2 7→ 5 60.03 69.53 60.41 72.39 72.85 71.86 65.62 71.83 73.76
Sleep-EDF 12 7→ 5 72.01 78.45 75.00 72.09 78.97 79.39 76.49 79.28 79.81
Sleep-EDF 7 7→ 18 53.91 73.18 65.82 71.61 74.34 74.49 60.93 73.19 75.32
Sleep-EDF 16 7→ 1 40.21 74.53 69.53 57.86 81.82 75.83 72.96 75.32 78.64
Sleep-EDF 9 7→ 14 75.00 80.14 82.22 82.55 86.14 86.32 76.75 81.64 87.17
Sleep-EDF 4 7→ 12 48.76 67.08 64.97 48.17 68.48 66.53 66.14 71.68 69.86
Sleep-EDF 10 7→ 7 67.86 74.35 76.05 60.41 75.05 75.23 74.31 73.31 77.23
Sleep-EDF 6 7→ 3 75.20 80.99 78.38 78.12 83.66 81.96 78.90 83.59 84.58
Sleep-EDF 8 7→ 10 35.21 55.16 36.79 51.25 46.01 65.70 44.76 44.22 62.35
Sleep-EDF Avg 58.38 72.24 66.66 65.83 66.04 73.50 67.33 72.36 76.31
Sleep-EDF Std of Avg 1.33 0.54 1.16 1.69 0.99 0.34 0.89 1.03 0.87

Boiler 1 7→ 2 57.09 67.93 67.13 67.42 68.13 68.93 72.43 75.74 98.06
Boiler 1 7→ 3 74.54 94.98 93.32 94.02 94.88 95.36 96.14 97.32 99.57
Boiler 2 7→ 1 73.14 85.96 84.32 84.32 87.76 88.74 89.32 90.23 97.33
Boiler 2 7→ 3 66.09 93.32 91.53 92.89 92.62 91.31 91.53 92.89 93.18
Boiler 3 7→ 1 74.99 93.89 92.43 93.01 93.14 93.92 94.77 95.32 98.1
Boiler 3 7→ 2 61.31 63.32 60.39 57.93 60.43 60.43 70.62 72.32 99.57
Boiler Avg 65.86 83.23 81.45 81.59 82.77 83.03 85.69 87.21 97.64
Boiler Std of Avg 0.84 1.02 0.73 0.78 0.81 0.97 0.64 0.69 0.51
Higher is better. Best value in bold.
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Table 11. Macro-F1 for each dataset between various subjects. Shown: mean Accuracy over 5 independent runs.
Sour 7→ Tar w/o UDA CDAN DeepCORAL AdaMatch DIRT-T CLUDA AdvSKM CoDATS RAINCOAT

HAR 2 7→ 11 0.69 0.85 0.91 0.73 0.81 0.81 0.99 0.66 1.00
HAR 6 7→ 23 0.63 0.88 0.81 0.81 0.68 0.92 0.87 0.71 0.96
HAR 7 7→ 13 0.84 0.91 0.87 0.86 0.82 0.99 0.92 0.78 1.00
HAR 9 7→ 18 0.17 0.61 0.44 0.55 0.58 0.67 0.73 0.60 0.76
HAR 12 7→ 16 0.58 0.64 0.65 0.48 0.62 0.64 0.68 0.64 0.86
HAR 13 7→ 19 0.91 0.97 0.95 0.94 0.99 0.94 0.93 0.93 1.00
HAR 18 7→ 21 1.00 1.00 1.00 1.00 0.98 0.99 1.00 0.99 1.00
HAR 20 7→ 6 0.94 0.95 0.95 0.84 0.92 0.98 0.84 0.65 0.94
HAR 23 7→ 13 0.71 0.82 0.70 0.67 0.74 0.71 0.77 0.54 0.86
HAR 24 7→ 12 0.84 0.92 0.88 0.70 0.93 0.99 0.96 0.81 0.94
HAR Avg 0.73 0.86 0.82 0.76 0.81 0.86 0.87 0.72 0.93
HAR Std of Avg 0.024 0.014 0.015 0.011 0.032 0.005 0.010 0.04 0.005

HHAR 0 7→ 2 0.60 0.70 0.86 0.83 0.76 0.82 0.72 0.73 0.87
HHAR 1 7→ 6 0.64 0.93 0.91 0.93 0.86 0.94 0.88 0.90 0.93
HHAR 2 7→ 4 0.32 0.52 0.45 0.46 0.51 0.44 0.44 0.46 0.59
HHAR 4 7→ 0 0.29 0.27 0.26 0.32 0.30 0.40 0.33 0.20 0.45
HHAR 4 7→ 5 0.78 0.98 0.90 0.76 0.93 0.94 0.93 0.96 0.98
HHAR 5 7→ 1 0.90 0.98 0.90 0.94 0.90 0.96 0.92 0.94 0.98
HHAR 5 7→ 2 0.19 0.35 0.36 0.40 0.36 0.37 0.35 0.41 0.41
HHAR 7 7→ 2 0.31 0.32 0.32 0.37 0.34 0.36 0.41 0.36 0.44
HHAR 7 7→ 5 0.36 0.76 0.50 0.60 0.73 0.65 0.64 0.59 0.86
HHAR 8 7→ 4 0.58 0.97 0.73 0.61 0.64 0.84 0.83 0.95 0.94
HHAR Avg 0.5 0.68 0.62 0.62 0.64 0.67 0.65 0.63 0.75
HHAR Std of Avg 0.022 0.013 0.007 0.013 0.023 0.008 0.003 0.006 0.004

WISDM 2 7→ 32 0.68 0.72 0.71 0.59 0.65 0.64 0.61 0.66 0.68
WISDM 4 7→ 15 0.52 0.44 0.42 0.54 0.41 0.61 0.55 0.41 0.98
WISDM 7 7→ 30 0.77 0.70 0.85 0.76 0.78 0.81 0.84 0.75 0.86
WISDM 12 7→17 0.53 0.50 0.67 0.67 0.56 0.59 0.53 0.62 0.72
WISDM 12 7→19 0.36 0.31 0.35 0.38 0.39 0.41 0.35 0.37 0.78
WISDM 18 7→20 0.81 0.87 0.63 0.66 0.67 0.70 0.71 0.76 0.92
WISDM 20 7→30 0.56 0.64 0.67 0.54 0.65 0.70 0.61 0.72 0.87
WISDM 21 7→31 0.10 0.31 0.27 0.16 0.28 0.27 0.28 0.30 0.43
WISDM 25 7→29 0.15 0.23 0.25 0.24 0.21 0.26 0.28 0.30 0.44
WISDM 26 7→2 0.69 0.71 0.64 0.74 0.54 0.75 0.55 0.70 0.75
WISDM Avg 0.52 0.54 0.52 0.54 0.54 0.57 0.55 0.56 0.74
WISDM Std of Avg 0.031 0.020 0.006 0.015 0.012 0.029 0.013 0.014 0.010

Sleep-EDF 0 7→ 11 0.48 0.54 0.50 0.52 0.53 0.47 0.48 0.50 0.54
Sleep-EDF 2 7→ 5 0.47 0.62 0.53 0.62 0.63 0.66 0.59 0.53 0.65
Sleep-EDF 12 7→ 5 0.59 0.68 0.65 0.66 0.67 0.69 0.64 0.66 0.70
Sleep-EDF 7 7→ 18 0.53 0.69 0.62 0.59 0.71 0.71 0.60 0.61 0.72
Sleep-EDF 16 7→ 1 0.43 0.62 0.58 0.48 0.66 0.67 0.63 0.58 0.70
Sleep-EDF 9 7→ 14 0.61 0.68 0.71 0.67 0.75 0.72 0.68 0.71 0.76
Sleep-EDF 4 7→ 12 0.42 0.59 0.59 0.37 0.59 0.55 0.59 0.58 0.62
Sleep-EDF 10 7→ 7 0.58 0.67 0.72 0.37 0.68 0.71 0.72 0.71 0.73
Sleep-EDF 6 7→ 3 0.67 0.73 0.70 0.62 0.75 0.73 0.72 0.70 0.75
Sleep-EDF 8 7→ 10 0.41 0.43 0.36 0.46 0.39 0.65 0.46 0.38 0.61
Sleep-EDF Avg 0.52 0.63 0.60 0.54 0.64 0.65 0.61 0.60 0.68
Sleep-EDF Std of Avg 0.026 0.005 0.015 0.004 0.005 0.007 0.003 0.012 0.008

Boiler 1 7→ 2 0.52 0.63 0.63 0.64 0.65 0.68 0.73 0.73 0.98
Boiler 1 7→ 3 0.74 0.95 0.93 0.94 0.95 0.95 0.96 0.97 0.98
Boiler 2 7→ 1 0.70 0.81 0.83 0.83 0.85 0.86 0.88 0.91 0.97
Boiler 2 7→ 3 0.60 0.91 0.90 0.91 0.91 0.90 0.90 0.91 0.91
Boiler 3 7→ 1 0.70 0.94 0.90 0.93 0.92 0.94 0.94 0.95 0.97
Boiler 3 7→ 2 0.55 0.59 0.60 0.54 0.61 0.58 0.69 0.70 0.99
Boiler Avg 0.635 0.80 0.80 0.80 0.82 0.82 0.85 0.86 0.97
Boiler Std of Avg 0.008 0.010 0.007 0.008 0.010 0.006 0.007 0.005 0.005
Higher is better. Best value in bold.
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Table 12. Accuracy of UniDA using WISDM, WISDM→HHAR, HHAR→WISDM, Shown: mean Accuracy over 5 independent runs.
Closed-Set DA baselines are colored in blue.

Sour 7→ Tar No. Tar Private Class CLUDA UAN DANCE OVANet UniOT RAINCOAT (A) RAINCOAT (with A&C)

WISDM 3 7→ 2 1 31.71 8.04 8.53 25.61 26.78 28.05 28.05
WISDM 3 7→ 7 1 23.96 8.19 8.33 34.38 30.31 25.92 25.92
WISDM 13 7→ 15 2 54.58 9.85 14.58 10.42 16.46 58.33 64.58
WISDM 14 7→ 19 2 30.30 39.03 44.00 42.42 40.32 46.21 53.78
WISDM 27 7→ 28 2 8.98 6.94 6.74 7.87 10.98 22.92 53.70
WISDM 1 7→ 0 2 71.05 70.34 75.71 74.29 73.14 73.68 82.57
WISDM 1 7→ 3 3 0.00 32.85 38.46 61.54 36.31 11.54 35.54
WISDM 10 7→ 11 4 60.52 31.80 30.26 35.53 39.35 72.37 76.36
WISDM 22 7→ 17 4 26.32 27.87 23.68 40.79 38.31 40.79 48.16
WISDM 27 7→ 15 4 56.25 22.18 27.08 60.42 52.34 58.17 66.42
WISDM Avg 36.37 25.71 27.70 33.28 36.43 44.08 53.51
WISDM Std of Avg 1.05 2.09 1.95 0.97 1.25 1.06 1.41

W→H 4 7→ 0 1 32.43 24.5 30.73 35.24 36.51 34.32 44.14
W→H 5 7→ 1 1 20.32 31.0 15.32 26.31 28.14 27.94 35.65
W→H 6 7→ 2 1 60.32 34.7 32.32 40.35 48.94 65.12 69.01
W→H 7 7→ 3 1 51.84 21.10 36.84 39.46 50.35 55.10 60.88
W→H 17 7→ 4 1 12.31 24.50 15.94 25.31 26.32 24.98 28.41
W→H 18 7→ 5 1 35.85 26.60 29.65 36.14 33.46 35.70 40.76
W→H 19 7→ 6 1 46.39 32.75 38.13 47.98 49.32 50.17 54.76
W→H 20 7→ 7 1 62.32 39.83 42.90 58.11 60.31 64.98 64.98
W→H 23 7→ 8 1 53.76 32.71 40.87 58.32 52.47 60.71 62.84
W→H Avg 37.55 29.74 39.06 40.80 42.87 46.55 51.35
W→H Std of Avg 1.04 1.38 1.98 1.65 1.74 1.31 1.22

H→W 0 7→ 4 1 59.32 55.30 61.94 63.14 64.07 62.98 64.84
H→W 1 7→ 5 1 56.17 50.33 58.10 60.14 61.46 60.94 62.85
H→W 2 7→ 6 1 50.44 49.85 52.51 54.84 56.15 55.95 57.11
H→W 3 7→ 7 1 52.21 53.01 55.91 55.71 58.91 56.42 60.95
H→W 4 7→ 17 1 39.87 37.04 41.39 41.01 42.50 41.94 44.95
H→W 5 7→ 18 1 47.72 47.80 50.35 51.87 52.22 49.95 51.27
H→W 6 7→ 19 1 44.50 43.09 46.19 44.08 45.93 46.05 51.86
H→W 7 7→ 20 1 50.92 54.01 59.85 61.35 61.06 47.00 62.59
H→W 8 7→ 23 1 44.50 42.06 43.66 48.14 49.71 47.77 52.64
H→W Avg 44.47 48.05 52.22 53.36 54.67 52.11 56.57
H→W Std of Avg 1.31 1.39 1.21 0.94 1.05 0.97 1.08
Higher Accuracy is better. Best value in bold.
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Table 13. H-Score of UniDA using WISDM, WISDM→HHAR, HHAR→WISDM, Shown: mean Accuracy over 5 independent runs.
Sour 7→ Tar No. Tar Private Class UAN DANCE OVANet UniOT RAINCOAT

WISDM 3 7→ 2 1 0 0 0.07 0.11 0.51
WISDM 3 7→ 7 1 0 0 0.2 0.22 0.52
WISDM 13 7→ 15 2 0 0.14 0.33 0.36 0.50
WISDM 14 7→ 19 2 0.24 0.28 0.31 0.28 0.55
WISDM 27 7→ 28 2 0.07 0.07 0.23 0.35 0.59
WISDM 1 7→ 0 2 0.41 0.39 0.38 0.40 0.43
WISDM 1 7→ 3 3 0.46 0.49 0.45 0.43 0.51
WISDM 10 7→ 11 4 0 0 0.34 0.41 0.53
WISDM 22 7→ 17 4 0.13 0 0.32 0.41 0.52
WISDM 27 7→ 15 4 0.43 0.51 0.46 0.52 0.57
WISDM Avg 0.17 0.19 0.31 0.35 0.52
WISDM Std of Avg 0.04 0.05 0.04 0.05 0.04

W→H 4 7→ 0 1 0 0.14 0.15 0.19 0.49
W→H 5 7→ 1 1 0.24 0.22 0.25 0.28 0.53
W→H 6 7→ 2 1 0.14 0.12 0.20 0.25 0.55
W→H 7 7→ 3 1 0 0.15 0.04 0.14 0.51
W→H 17 7→ 4 1 0.35 0.28 0.41 0.45 0.57
W→H 18 7→ 5 1 0.20 0.27 0.29 0.32 0.47
W→H 19 7→ 6 1 0.19 0.22 0.25 0.28 0.51
W→H 20 7→ 7 1 0.11 0.17 0.35 0.41 0.49
W→H 23 7→ 8 1 0.21 0.28 0.47 0.51 0.57
W→H Avg 0.16 0.21 0.24 0.28 0.52
W→H Std of Avg 0.03 0.02 0.03 0.02 0.02

H→W 0 7→ 4 1 0.23 0.28 0.33 0.37 0.45
H→W 1 7→ 5 1 0.19 0.31 0.38 0.42 0.47
H→W 2 7→ 6 1 0.04 0.17 0.23 0.29 0.39
H→W 3 7→ 7 1 0.25 0.32 0.34 0.40 0.42
H→W 4 7→ 17 1 0.31 0.39 0.41 0.40 0.51
H→W 5 7→ 18 1 0.28 0.34 0.37 0.36 0.48
H→W 6 7→ 19 1 0.42 0.42 0.46 0.47 0.49
H→W 7 7→ 20 1 0.39 0.41 0.41 0.44 0.52
H→W 8 7→ 23 1 0.19 0.28 0.32 0.35 0.46
H→W Avg 0.26 0.32 0.36 0.39 0.47
H→W Std of Avg 0.05 0.05 0.03 0.04 0.03
Higher H-Score is better. Best value in bold.
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