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Abstract

Interpreting time series models is uniquely challenging because it requires iden-
tifying both the location of time series signals that drive model predictions and
their matching to an interpretable temporal pattern. While explainers from other
modalities can be applied to time series, their inductive biases do not transfer well
to the inherently uninterpretable nature of time series. We present TIMEX, a time
series consistency model for training explainers. TIMEX trains an interpretable
surrogate to mimic the behavior of a pretrained time series model. It addresses the
issue of model faithfulness by introducing model behavior consistency, a novel
formulation that preserves relations in the latent space induced by the pretrained
model with relations in the latent space induced by TIMEX. TIMEX provides
discrete attribution maps and, unlike existing interpretability methods, it learns a
latent space of explanations that can be used in various ways, such as to provide
landmarks to visually aggregate similar explanations and easily recognize temporal
patterns. We evaluate TIMEX on 8 synthetic and real-world datasets and compare
its performance against state-of-the-art interpretability methods. We also conduct
case studies using physiological time series. Quantitative evaluations demonstrate
that TIMEX achieves the highest or second-highest performance in every metric
compared to baselines across all datasets. Through case studies, we show that
the novel components of TIMEX show potential for training faithful, interpretable
models that capture the behavior of pretrained time series models.

1 Introduction

State-of-the-art time series models are high-capacity pre-trained neural networks [1, 2] often seen
as black boxes due to their internal complexity and lack of interpretability [3]. However, practical
use requires techniques for auditing and interrogating these models to rationalize their predictions.
Interpreting time series models poses a distinct set of challenges due to the need to achieve two goals:
pinpointing the specific location of time series signals that influence the model’s predictions, and
aligning those signals with interpretable temporal patterns [4]. Applying explainers designed for other
types of data is difficult, as their inductive biases struggle to adapt to the inherently uninterpretable
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nature of time series. The dynamic nature and multi-scale dependencies within time series data
require temporal interpretability techniques.

Research in model understanding and interpretability developed post-hoc explainers that treat pre-
trained models as black boxes and do not need access to internal model parameters, activations, and
gradients. Recent research, however, shows that such post hoc methods suffer from a lack of faith-
fulness and stability, among other issues [5, 6, 7]. A model can also be understood by investigating
what parts of the input it attends to through attention mapping [8, 9, 10] and measuring the impact
of modifying individual computational steps within a model [11, 12]. Another major line of inquiry
investigates internal mechanisms by asking what information the model contains [13, 14, 15]. For
example, it has been found that even when a language model is conditioned to output falsehoods,
it may include a hidden state that represents the true answer internally [16]. Such a gap between
external failure modes and internal states can only be identified by probing model internals. Such
representation probing has been used to characterize the behaviors of language models, but leveraging
these strategies to understand time series models has yet to be attempted. These lines of inquiry drive
the development of in-hoc explainers [17, 18, 19, 20, 21, 22] that build inherent interpretability into
the model through architectural modifications[18, 19, 23, 20, 21] or regularization[17, 22]. However,
no in-hoc explainers have been developed for time series data. While explainers designed for other
modalities can be adapted to time series, their inherent biases do not translate effectively to the
uninterpretable nature of time series data and can miss important structures in time series.

Figure 1: TIMEX learns a latent space of explana-
tions along with landmarks to summarize groups
of informative temporal patterns in time series.

Explaining time series models is challenging for
many reasons. First, large time series data are
not visually interpretable, as opposed to imag-
ing or text datasets. Next, time series often
exhibit dense informative features, in contrast
to more explored modalities such as imaging,
where informative features are often sparse. In
time series datasets, timestep-to-timestep tran-
sitions can be negligible and temporal patterns
only show up when looking at time segments and
long-term trends. In contrast, in text datasets,
word-to-word transitions are informative for
language modeling and understanding. Fur-
ther, time series interpretability involves under-
standing dynamics of the model and identifying
trends or patterns. Another key issue with apply-
ing prior methods is that they treat all time steps
as separate features, ignoring potential time de-
pendencies and contextual information; we need
explanations that are temporally connected and
visually digestible. While understanding predic-
tions of individual samples is valuable, the ability to establish connections between explanations of
various samples (for example, in an appropriate latent space) could help alleviate these challenges.
Present work. We present TIMEX, a novel time series in-hoc explainer that produces interpretable
attribution masks as explanations over time series inputs (Figure 1). Our codebase is at https:
//github.com/mims-harvard/TimeX. 1⃝ A key contribution of TIMEX is the introduction of
model behavior consistency, a novel formulation that ensures the preservation of relationships in the
latent space induced by the pretrained model, as well as the latent space induced by TIMEX. 2⃝ In
addition to achieving model behavior consistency, TIMEX offers interpretable attribution maps, which
are valuable tools for interpreting the model’s predictions, generated using discrete straight-through
estimators (STEs), a type of gradient estimators that enable end-to-end training of TIMEX models.
3⃝ Unlike existing interpretability methods, TIMEX goes a step further by learning a latent space

of explanations. By incorporating model behavior consistency and leveraging a latent space of
explanations, TIMEX not only provides discrete attribution maps but also enables visual aggregation
of similar explanations and the recognition of temporal patterns. 4⃝ We test our approach on 8
synthetic and real-world time series datasets, including datasets with carefully processed ground-truth
explanations to quantitatively benchmark it and compare it to general explainers, state-of-the-art time
series explainers, and in-hoc explainers.
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Figure 2: Overview of TIMEX approach.

2 Related work

Model understanding and interpretability. As neural networks have grown, so has the need to
help users interpret a network’s behavior. The vast majority of explainable AI research [24] has
focused on natural language processing (NLP) [25, 26, 27] and computer vision (CV) [28, 29, 30].
Commonly used techniques, such as Integrated Gradients [31] and Shapley Additive Explanations
(SHAP) [3], and their variants have originated from these domains and gained popularity. XAI has
gained significant interest in NLP and CV due to the inherent interpretability of their data. However,
this familiarity can introduce confirmation bias [32]. Recent works have expanded to other data
modalities, including graphs [33, 6] and time series [34, 35], as outlined below.

The literature primarily focuses on post-hoc explainability, where explanations are provided for
a trained and frozen model’s behavior [36, 37]. However, saliency maps, a popular approach
[38, 31, 39], have pitfalls when generated post-hoc: they are surprisingly fragile [5], and lack
sensitivity to their explained models [40]. Surrogate-based approaches have also been proposed
[41, 42, 43], but these simplified surrogate models fall short compared to the original predictor they
aim to explain.

Unlike post-hoc explainability, in-hoc methods aim for inherently interpretable models. This can be
accomplished by modifying the model’s architecture [20], training procedure using jointly-trained
explainers [44], adversarial training [45, 46, 47], regularization techniques [17, 22], or refactoring
the latent space [48, 49]. However, such models often struggle to achieve state-of-the-art predictive
performance, and to date, these methods have seen limited use for time series.
Beyond instance-based explanations. Several methods have been proposed to provide users with
information beyond a single, instance-based saliency map. Prototype models strive to offer a
representative sample or region in the latent space [50, 51]. Such methods are inherently interpretable,
as predictions are directly tied to patterns in the feature space. Further, explainability through
human-interpretable exemplars has been gaining popularity. Concept-based methods decompose
model predictions into human-interpretable concepts. Many works rely on annotated datasets with
hand-picked concepts (e.g., “stripes” in an image of a zebra). Relying on access to a-priori defined
concepts, concept bottleneck models learn a layer that attributes each neuron to one concept [23].
This limitation has spurred research in concept discovery by composing existing concepts [52, 53] or
grounding detected objects to natural language [54]. However, the computer vision focus of these
works poses limited transfer to other domains like time series.
Time series explainability. In contrast to other modalities, time series often have multiple variables,
and their discriminative information is spread over many timesteps. Building on these challenges,
recent works have begun exploring XAI for time series [55, 56, 57, 58, 59, 60, 34, 61]. Many
methods modify saliency maps [35, 62, 57] or surrogate methods [58, 63] to work with time series
data. Two representative methods are WinIT [64] and Dynamask [57]. WinIT learns saliency maps
with temporal feature importances, while Dynamask regularizes saliency maps to include temporal
smoothing. However, these methods rely on perturbing timesteps [62], causing them to suffer from a
lack of faithfulness. Common perturbation choices in CV, like masking with zeros, make less sense
for time series [55]. Perturbed time series may be out-of-distribution for the model due to shifts in
shape [65], resulting in unfaithful explanations akin to adversarial perturbation [66].
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3 Problem formulation

Notation. Given is a time series dataset D = (X ,Y) = {(xi, yi)|i = 1, ..., N} where xi are input
samples and yi are labels associated to each sample. Each sample xi ∈ RT×d is said to have T
time steps and d sensors. A feature is defined as a time-sensor pair, where the time t and sensor k
for input xi is xi[t, k]. Without loss of generality, our model is defined for univariate (d = 1) and
multivariate (d > 1) settings. Each yi ∈ {1, 2, ..., C} belongs to one of C classes. A classifier model
consists of an encoder G and predictor F . The encoder G produces an embedding of input xi, i.e.,
G(xi) = zi ∈ Rdz , while the predictor produces some prediction from the embedding in the form
of a logit, i.e., F (G(xi)) = ŷi ∈ [0, 1]C where argmaxj ŷi[j] ∈ {1, ..., C} is the predicted label.
The latent space induced by G is defined as Z, e.g., G : X → Z. We will refer to F (G(·)) as the
reference model while G is the reference encoder and F is the reference predictor. An explanation is
defined as a continuous map of the features that conveys the relative importance of each feature for
the prediction. The explanation for sample xi is given as E(xi) ∈ RT×d where for any times t1, t2
and sensors k1, k2, E(xi[t1, k1]) > E(xi[t2, k2]) implies that xi[t1, k1] is a more important feature
for the task than xi[t2, k2].

3.1 TIMEX problem formulation

TIMEX creates an inherently-interpretable surrogate model for pretrained time series models. The
surrogate model produces explanations by optimizing two main objectives: interpretability and
faithfulness to model behavior. First, we generate interpretable explanations via an attribution map
E(xi) that identifies succinct, connected regions of input that are important for the prediction. To
ensure faithfulness to the reference model, we introduce a novel objective for training TIMEX:
model behavior consistency (MBC). With MBC, a TIMEX model learns to mimic internal layers and
predictions of the reference model, yielding a time series a high-fidelity explainer. MBC is defined as:
Definition 3.1 (Model Behavior Consistency (MBC)). The explanations E and explanation encoder
GE are consistent with the pretrained model G and predictor F on dataset D if the following two
requirements are satisfied:

• [Consistent reference encoder]: Relationship between zi = G(xi) and zj = G(xj) in the space
of reference encoder is preserved by the explainer, zEi = GE(E(xi)) and zEj = GE(E(xj)), such
that: DZ(zi, zj) ≃ DE

Z (z
E
i , z

E
j ) for samples xi,xj ∈ D.

• [Consistent reference predictor]: Relationship between reference predictor ŷi = F (zi) and latent
explanation predictor ŷEi = F (zEi ) is preserved, ŷi ≃ ŷEi for every sample xi ∈ D.

Our central problem formulation is defined as realizing the MBC between a reference model and an
interpretable TIMEX model:
Problem statement 3.1 (TIMEX). Given are pretrained time series encoder G and predictor F that
are trained on a time series dataset D. TIMEX provides explanations E(xi) for every sample xi ∈ D
in the form of interpretable attribution maps. These explanations satisfy model behavior consistency
through the latent representation space of explanations ZE generated by the explanation encoder GE .

TIMEX is designed to counter several challenges in interpreting time series models. First, TIMEX
avoids the pitfall known as the occlusion problem [67]. Occlusion occurs when some features in an
input xi are perturbed in an effort that the predictor forgets those features. Since it is well-known
that occlusion can produce out-of-distribution samples [68], this can cause unpredictable shifts in the
behavior of a fixed, pretrained model [69, 70, 71]. In contrast, TIMEX avoids directly masking input
samples to G. First, TIMEX trains an interpretable surrogate GE to match the behavior of G. Second,
MBC is designed to improve the faithfulness of TIMEX to G. By learning to mimic multiple states of
F (G(·)) using the MBC objective, TIMEX learns highly-faithful explanations, unlike many post-hoc
explainers that provide no explicit optimization of faithfulness. Finally, TIMEX’s explanations are
driven by learning a latent explanation space, offering richer interpretability data.

4 TIMEX method

We now present TIMEX, an approach to train an interpretable surrogate model to provide explanations
for a pretrained time series model. TIMEX learns explanations through a consistency learning
objective where an explanation generator HE and explanation encoder GE are trained to match
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intermediate feature spaces and the predicted label space. We will break down TIMEX in the
following sections by components: HE , the explanation generator, GE , the explanation encoder, and
the training objective of GE(HE(·)), followed by a discussion of practical considerations of TIMEX.
An overview of TIMEX is depicted in Figure 2.

4.1 Explanation generation

Generating an explanation involves producing a mask MX where if MX [t1, k1] > MX [t2, k2],
then MX [t1, k1] is considered as more important for the prediction than MX [t2, k2]. Explanation
generation is performed through an explanation generator HE : X → p ∈ [0, 1]T×d. We learn p
based on a procedure proposed by [49], but we adapt their procedure for time series. Intuitively, p
parameterizes a Bernoulli at each time-sensor pair, and the mask MX is sampled from this Bernoulli
distribution during training, i.e., MX ∼ Pp(MX |X ) =

∏
t,k Bern(pt,k). This parameterization is

directly interpretable as attribution scores: a low pt,k means that time-sensor pair (t, k) has a low
probability of being masked-in. Thus, p is also the explanation for xi, i.e., E(x) = p.

The generation of p is regularized through a divergence with Bernoulli distributions Bern(r), where
r is a user-chosen hyperparameter. Denote the desired distribution of p as Q(MX ) =

∏
(t,k) Bern(r).

Then the objective becomes:

Lm(p) = E[DKL(Pp(MX |X )||Q(MX ))] =
∑
t,k

pt,k log
pt,k

r
+ (1− pt,k) log

1− pt,k

1− r
(1)

The sampling of MX ∼ Pp(MX |X ) is performed via the Gumbel-Softmax trick [72, 73], which is a
differentiable approximation of categorical sampling. Importantly, MX is stochastically generated,
which as discussed in [49, 74], regularizes the model to learn robust explanations.

To generate interpretable attribution masks, TIMEX optimizes for the connectedness of predicted
distributions:

Lcon(p) =
1

T × d

d∑
k=1

T−1∑
t=1

√
(pt,k − pt+1,k)2. (2)

The generator of explanations HE learns directly on input time series samples X to return p. We
build a transformer encoder-decoder structure for HE , using an autoregressive transformer decoder
and a sigmoid activation to output probabilities for each time-sensor pair.

4.2 Explanation encoding

We now describe how to embed explanations with the explanation encoder GE . Intuitively, GE learns
on the masked distribution of X , which can be denoted as Xm. Motivated by the occlusion problem,
we avoid directly applying the masks onto the pre-trained, frozen G, as Xm and X are fundamentally
different distributions. Therefore, we copy the weights of G into GE and fine-tune GE on Xm.
Discretizing attribution masks. When passing inputs to GE , it is important for the end-to-end
optimization to completely ignore regions identified as unimportant by HE . Therefore, we use a
straight-through estimator (STE) [72] to obtain a discrete mask MX ∈ {0, 1}T×d. Introduced by
[75], STEs utilize a surrogate function to approximate the gradient of a non-differentiable operation
used in the forward pass, such as binarization.
Applying masks to time series samples. We use two types of masking procedures: attention
masking and direct-value masking. First, we employ differentiable attention masking through a
multiplicative operation proposed by Nguyen et al. [76]. When attention masking does not apply,
based on architecture choice or the use of multivariate inputs, we a direct-value masking procedure.
We approximate a baseline distribution: BX =

∏
t,kN (µtk, σ

2
tk), where µtk and σ2

tk are the mean
and variance over time-sensor pairs. Masking is then performed through a multiplicative replacement
as: xm

i = (MX ⊙ xi) + (1−MX )⊙ b, where b ∼ BX .
Justification for discrete masking. It is important that masks MX are discrete as opposed to
continuous. Previous works have considered masking techniques [77, 48, 49] with continuous
masks. However, continuous masking has a distinctly different interpretation: it applies a continuous
deformation of the input towards a baseline value. While such an approach is reasonable for data
modalities with discrete structures, such as sequences of tokens (as in [77, 48]) or nodes in graphs

5



[49], such deformation may result in a change of the shape of time series data, which is known
to be important for prediction [65]. As a toy example, consider an input time series xi where
the predictive pattern is driven by feature xi[t1, k1] being larger than all other features. If MX is
continuous, then it is possible that for a less important feature xi[t2, k2], MX [t1, k1] < MX [t2, k2]
while (MX [t1, k1]⊙xi[t1, k1]) > (MX [t2, k2]⊙xi[t2, k2]), thereby preserving the predictive pattern
while the mask indicates that xi[t2, k2] is more important than xi[t1, k1]. If a surrogate model is
trained on MX ⊙ xi, MX may violate the ordinality expected by an attribution map as defined in
Section 3. Discrete masking alleviates this issue by forcing MX to be binary, removing the possibility
of confounds created by continuous masking. Therefore, discrete masking is necessary when learning
interpretable masks on continuous time series.

4.3 Model behavior consistency

The challenge lies in training GE(HE(·)) to faithfully represent F (G(·)). We approach this by
considering the latent spaces of G and GE . If G considers xi and xj to be similar in Z, we expect
that a faithful GE would encode E(xi) and E(xj) similarly. However, directly aligning G and
GE is not suitable due to potential differences in the geometry of the explanation embedding space
compared to the full input latent space. To address this, we introduce model behavior consistency
(MBC), a novel self-supervised objective that trains the explainer model to mimic the behavior of the
original model without strict alignment between the spaces. Denote the latent space induced by G
and GE as Z and ZE , respectively. The MBC objective is thus defined as:

LMBC(Z,Z
E) =

∑
zi,zj∈Z

∑
zE
i ,zE

j ∈ZE

(DZ(zi, zj)−DZE (zEi , z
E
j ))

2, (3)

where DZ and DZE are distance functions on the reference model’s latent space and the explanation
encoder’s latent space, respectively. This objective encourages distances to be similar across both
spaces, encouraging ZE to retain a similar local topology to Z without performing direct alignment.
This is closely related to cycle-consistency loss, specifically cross-modal cycle-consistency loss
as [78]. We use cosine similarity for DZ and DZE throughout experiments in this study, but any
distance can be defined on each respective space.

In addition to MBC, we use a label consistency (LC) objective to optimize TIMEX. We train a
predictor FE on ZE to output logits consistent with those output by F . We use a Jensen-Shannon
Divergence (DJS) between the logits of both predictors:

LLC(Z,Z
E) =

∑
zi,zj∈Z

∑
zE
i ,zE

j ∈ZE

(
DJS(F (zi)||F (zj))−DJS(F

E(zEi )||FE(zEj ))
)2

(4)

Our total loss function on ZE can then be defined as a combination of losses: LZE = LMBC+λLCLLC.
Consistency learning justification. MBC offers three key benefits for explainability. 1⃝ MBC
enables consistency optimization across two latent spaces Z and ZE without requiring that both
xi and E(xi) be encoded by the same model, allowing the learning of E on a separate model
FE(GE(·)) ̸= F (G(·)). This avoids the out-of-distribution problems induced by directly masking
inputs to G. 2⃝ MBC provides a comprehensive representation of model behavior for explainer
optimization. This is in contrast to perturbation explanations [38, 79, 57] which seek a label-
preserving perturbation P on F (G(·)) where F (G(P (xi))) ≈ F (G(xi)). By using G(xi) and
F (G(xi)) to capture the behavior of the reference model, MBC’s objective is richer than a simple
label-preserving objective. 3⃝While MBC is stronger than label matching alone, it is more flexible
than direct alignment. An alignment objective, which enforces zi ≈ zEi , inhibits GE from learning
important features of explanations not represented in Z. The nuance and novelty of MBC are in
learning a latent space that is faithful to model behavior while being flexible enough to encode rich
relational structure about explanations that can be exploited to learn additional features such as
landmark explanations. Further discussion of the utility of MBC is in Appendix B.

4.4 Learning explanation landmarks and training TIMEX models

Leveraging TIMEX’s latent space, we learn landmark explanations zL ∈ Rdz . Such landmarks are
desirable as they allow users to compare similar explanation patterns across samples used by the
predictor. Landmarks are learned by a landmark consistency loss, and their optimization is detached
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from the gradients of the explanations so as to not harm explanation quality. Denote the landmark
matrix as L ∈ RnL×dz where nL corresponds to the number of landmarks (a user-chosen value) and
dz is the dimensionality of ZE . For each sample explanation embedding zEi , we use Gumbel-Softmax
STE GS to stochastically match zEi to the nearest landmark in the embedding space. Denote the
vector of similarities to each zEi as s(zEi , L). Then the assimilation A is described as:

A(zEi ;L) = GS(softmax(s(sg(zEi ),L)))L, (5)

where sg denotes the stop-grad function. The objective for learning landmarks is then
LMBC(Z,A(Z

E ;L)), optimizing the consistency between the assimilated prototypes and the refer-
ence model’s latent space. Landmarks are initialized as a random sample of explanation embeddings
from ZE , but then are allowed to change via gradient descent. After learning landmarks, we can
measure the quality of each landmark by the number of zEi embeddings closest to it in latent space.
We filter out any landmarks that are not sufficiently close to any samples (described in Appendix B).
TIMEX training. The overall loss function for TIMEX has four components which we sum to
produce our total loss: L = LMBC + λLCLLC + λE(Lm + λconLcon), where λLC, λE , λcon ∈ R are
weights for the label consistency loss and total explanation loss, and connective explanation loss,
respectively. TIMEX can be optimized in an end-to-end fashion, and it requires little hyperparameter
choices from the user. The user must also choose the r parameter for the explanation regularization.
We find that explanation performance is stable across choices of r (as found in [49]), so we set r = 0.5
to remain consistent throughout experiments. A lower r value may be provided if the underlying
predictive signal is known to be sparse. In total, TIMEX optimizes HE , GE , and FE .

5 Experimental setup

Datasets. We design 4 synthetic datasets with known ground-truth explanations: FreqShapes,
SeqComb-UV, SeqComb-MV, and LowVar. Datasets are designed to capture diverse temporal
dynamics in both univariate and multivariate settings. We employ 4 datasets from real-world time
series classification tasks: ECG [80] - ECG arrhythmia detection; PAM [81] - human activity
recognition; Epilepsy [82] - EEG seizure detection; and Boiler [83] - mechanical fault detection. We
define ground-truth explanations for ECG as QRS intervals, which are known regions of ECG signals
where arrhythmias can be detected. Such R, P, and T wave intervals are extracted following [84].
Dataset details are given in Appendix C.1 and C.4.
Baselines. We evaluate the method against five explainability baselines. As a general explainer, we
use integrated gradients (IG) [31]; for recent time series-specific explainers, we use Dynamask [57],
and WinIT [85]; for an explainer that uses contrastive learning, we use CoRTX [86]; and for an
in-hoc explainer which has been demonstrated for time series, we use SGT + Grad [17].
Evaluation. We consider two approaches. Ground-truth explanations: Generated explanations are
compared to ground-truth explanations, i.e., known predictive signals in each input time series sample
when interpreting a strong predictor, following established setups [6]. We use the area under precision
(AUP) and area under recall (AUR) curves to evaluate the quality of explanations [57]. We also use
the explanation AUPRC, which combines the results of AUP and AUR. For all metrics, higher values
are better. Definitions of metrics are in Appendix C.4. Feature importance under occlusion: We
occlude the bottom p-percentile of features as identified by the explainer and measure the change in
prediction AUROC (Sec. 4.2). The most important features a strong explainer identifies should retain
prediction performance under occlusion when p is high. To control for potential misinterpretations
based on the occlusion problem, we include a random explainer reference. Our experiments use
transformers [87] with time-based positional encoding. Hyperparameters, experimental, training, and
compute details are given in Appendix C.

6 Results

R1: Comparison to existing methods on synthetic and real-world datasets.
Synthetic datasets. We compare TIMEX to existing explainers on the task of identifying important
signals in time series datasets. Tables 1-2 show results for univariate and multivariate datasets,
respectively. Across univariate and multivariate settings, TIMEX is the best explainer on 10/12 (3
metrics in 4 datasets) with an average improvement in the explanation AUPRC (10.01%), AUP
(6.01%), and AUR (3.35%) over the strongest baselines. Specifically, TIMEX improves ground-truth
explanation in terms of AUP by 3.07% on FreqShapes, 6.3% on SeqComb-UV, 8.43% on SeqComb-
MV, and 6.24% on LowVar over the strongest baseline on each dataset. In all of these settings, AUR
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FreqShapes SeqComb-UV
Method AUPRC AUP AUR AUPRC AUP AUR

IG 0.7516±0.0032 0.6912±0.0028 0.5975±0.0020 0.5760±0.0022 0.8157±0.0023 0.2868±0.0023
Dynamask 0.2201±0.0013 0.2952±0.0037 0.5037±0.0015 0.4421±0.0016 0.8782±0.0039 0.1029±0.0007
WinIT 0.5071±0.0021 0.5546±0.0026 0.4557±0.0016 0.4568±0.0017 0.7872±0.0027 0.2253±0.0016
CoRTX 0.6978±0.0156 0.4938±0.0004 0.3261±0.0012 0.5643±0.0024 0.8241±0.0025 0.1749±0.0007
SGT + Grad 0.5312±0.0019 0.4138±0.0011 0.3931±0.0015 0.5731±0.0021 0.7828±0.0013 0.2136±0.0008

TIMEX 0.8324±0.0034 0.7219±0.0031 0.6381±0.0022 0.7124±0.0017 0.9411±0.0006 0.3380±0.0014

Table 1: Attribution explanation performance on univariate synthetic datasets.

SeqComb-MV LowVar
Method AUPRC AUP AUR AUPRC AUP AUR

IG 0.3298±0.0015 0.7483±0.0027 0.2581±0.0028 0.8691±0.0035 0.4827±0.0029 0.8165±0.0016
Dynamask 0.3136±0.0019 0.5481±0.0053 0.1953±0.0025 0.1391±0.0012 0.1640±0.0028 0.2106±0.0018
WinIT 0.2809±0.0018 0.7594±0.0024 0.2077±0.0021 0.1667±0.0015 0.1140±0.0022 0.3842±0.0017
CoRTX 0.3629±0.0021 0.5625±0.0006 0.3457±0.0017 0.4983±0.0014 0.3281±0.0027 0.4711±0.0013
SGT + Grad 0.4893±0.0005 0.4970±0.0005 0.4289±0.0018 0.3449±0.0010 0.2133±0.0029 0.3528±0.0015

TIMEX 0.6878±0.0021 0.8326±0.0008 0.3872±0.0015 0.8673±0.0033 0.5451±0.0028 0.9004±0.0024

Table 2: Attribution explanation performance on multivariate synthetic datasets.

is less important than AUP since the predictive signals have redundant information. TIMEX achieves
high AUR because it is optimized to output smooth masks over time, tending to include more of
entire subsequence patterns rather than sparse portions, which is an important property for human
interpretation. We show TIMEX’s explanations in Appendix C.5 to visualize this property.
Real-world datasets: arrhythmia detection. We demonstrate TIMEX on ECG arrhythmia detection.
TIMEX’s attribution maps show a state-of-the-art performance for finding relevant QRS intervals
driving the arrhythmia diagnosis and outperform the strongest baseline by 5.39% (AUPRC) and
9.83% (AUR) (Table 3). Integrated gradients achieves a slightly higher AUP, whereas state-of-the-art
time series explainers perform poorly. Notably, TIMEX’s explanations are significantly better in
AUR, identifying larger segments of the QRS interval rather than individual timesteps.
Ablation study on ECG data. We conduct ablations on the ECG data using TIMEX (Table 3). First,
we show that the STE improves performance as opposed to soft attention masking, resulting in an
AUPRC performance gain of 9.44%; this validates our claims about the pitfalls of soft masking for
time series. Note that this drop in performance becomes more significant when including direct-value
masking, as we show in Appendix C.6. Second, we use SimCLR loss to align ZE to Z as opposed to
MBC; SimCLR loss is able to achieve comparable results in AUPRC and AUR, but the AUP is 13.6%
lower than the base TIMEX. Third, we experiment with the usefulness of MBC and LC objectives.
MBC alone produces poor explanations with AUPRC at 65.8% lower score than the base model.
LC alone does better than MBC alone, but its AUPRC is still 21.5% lower than the base model.
MBC and LC in conjunction produce high-quality explanations, showing the value in including more
intermediate states for optimizing GE(HE(·)). Extensive ablations are provided in Appendix C.6.
R2: Occlusion experiments on real-world datasets.

We evaluate TIMEX explanations by occluding important features from the reference model and
observing changes in classification [62, 57, 86]. Given a generated explanation E(xi), the bottom
p-percentile of features are occluded; we expect the classification performance to drop significantly
when replacing important features (identified by the explainer) with baseline values. To counter
misinterpretation induced by the occlusion problem (Sec. 3.1), we compare the performance under
occlusion to random explanations. We adopt the masking procedure described in Sec. 4.2, performing
attention masking where applicable and direct-value masking otherwise.

ECG TIMEX ECG
Method AUPRC AUP AUR Ablations AUPRC AUP AUR

IG 0.4182±0.0014 0.5949±0.0023 0.3204±0.0012 Full 0.4721±0.0018 0.5663±0.0025 0.4457±0.0018
Dynamask 0.3280±0.0011 0.5249±0.0030 0.1082±0.0080 –STE 0.4014±0.0019 0.5570±0.0032 0.1564±0.0007
WinIT 0.3049±0.0011 0.4431±0.0026 0.3474±0.0011 +SimCLR 0.4767±0.0021 0.4895±0.0024 0.4779±0.0013
CoRTX 0.3735±0.0008 0.4968±0.0021 0.3031±0.0009 Only LC 0.3704±0.0018 0.3296±0.0019 0.5084±0.0008
SGT + Grad 0.3144±0.0010 0.4241±0.0024 0.2639±0.0013 Only MBC 0.1615±0.0006 0.1348±0.0006 0.5504±0.0011

TIMEX 0.4721±0.0018 0.5663±0.0025 0.4457±0.0018

Table 3: (Left) Benchmarking TIMEX on the ECG dataset. (Right) Results of ablation analysis.
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Figure 3: Occlusion experiments on real-world datasets. Higher values indicate better performance.

Latent Space of Explanations
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Figure 4: Landmark analysis of TIMEX on the ECG dataset. Shown is a UMAP plot of the latent
explanation space along with learned landmark explanations. For two selected landmarks (in red), we
show three explanation instances most similar to each landmark.

Figure 3 compares TIMEX to Dynamask, a strong time-series explainer. On all datasets, TIMEX’s
explanations are either at or above the performance of Dynamask, and both methods perform above
the random baseline. On Boiler dataset, we demonstrate an average of 27.8% better classification
AUROC across each threshold compared to Dynamask, with up to 37.4% better AUROC at the 0.75
threshold. This gap in performance between TIMEX and Dynamask is likely because the underlying
predictor for Boiler is weaker than that of Epilepsy or PAM, achieving 0.834 AUROC compared
to 0.979 for PAM and 0.939 for Epilepsy. We hypothesize that TIMEX outperforms Dynamask
because it considers simply changes in predicted labels under perturbation while TIMEX optimizes
for consistency across both labels and embedding spaces in the surrogate and reference models.
TIMEX performs well across both univariate (Epilepsy) and multivariate (PAM and Boiler) datasets.
R3: Landmark explanation analysis on ECG.

To demonstrate TIMEX’s landmarks, we show how landmarks serve as summaries of diverse patterns
in an ECG dataset. Figure 4 visualizes the learned landmarks in the latent space of explanations. We
choose four representative landmarks based on the previously-described landmark ranking strategy
(Sec. 4.4). Every landmark occupies different regions of the latent space, capturing diverse types
of explanations generated by the model. We show the three nearest explanations for the top two
landmarks in terms of the nearest neighbor in the latent space. Explanations 1⃝, 2⃝, and 3⃝ are
all similar to each other while distinctly different from 4⃝, 5⃝, and 6⃝, both in terms of attribution
and temporal structure. This visualization shows how landmarks can partition the latent space of
explanations into interpretable temporal patterns.

7 Conclusion

We develop TIMEX, an interpretable surrogate model for interpreting time series models. By
introducing the novel concept of model behavior consistency (i.e., preserving relations in the latent
space induced by the pretrained model when compared to relations in the latent space induced by
TIMEX), we ensure that TIMEX mimics the behavior of a pretrained time series model, aligning
influential time series signals with interpretable temporal patterns. The generation of attribution
maps and the utilization of a latent space of explanations distinguish TIMEX from existing methods.
Results on synthetic and real-world datasets, as well as case studies involving physiological time
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series, demonstrate the superior performance of TIMEX compared to state-of-the-art interpretability
methods. TIMEX’s innovative components offer promising potential for training interpretable models
that capture the behavior of pretrained time series models.
Limitations. While TIMEX is not limited to a specific task as an explainer, our experiments focus on
time series classification. TIMEX can be used to explain other downstream tasks assuming we can
access the latent pretrained space, meaning it could be used to examine general pretrained models for
time series. However, the lack of such pretrained time series models and the lack of datasets with
reliable ground-truth explanations restricted our testing in this area. One limitation of our approach
is its parameter efficiency due to the separate optimization of the explanation-tuned model. Larger
models may require adopting parameter-efficient tuning strategies.
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Appendix A Further discussion of background

Straight-through estimators. Discrete operations, such as thresholding, are often avoided in neural
network architectures due to difficulties differentiating discrete functions. To circumvent these
issues, [75] introduce the straight-through estimator (STE), which uses a surrogate function during
backpropagation to approximate the gradient for a non-differentiable operation. STEs have seen
usage in quantized neural networks [S1]. This method shows empirical performance even though
there is little theoretical justification behind it [S2].
Self-supervised learning. Methods in self-supervised learning (SSL) have become a common
pretraining technique for settings in which large, unlabeled datasets are available [S3, S4, S5, S6].
Common approaches for self-supervised learning are contrastive learning, which seeks to learn
representations for samples under invariant data augmentations, and metric learning, which aims to
learn a latent space in which a distance function captures some pre-defined relations on data [S7].
Consistency learning has emerged as another promising SSL approach; intuitively, this family of
methods seeks to learn latent spaces in which similar pairs are expected to be embedded similarly,
i.e., preserving some consistent properties. Consistency learning has seen use in aligning videos
[S8], enhancing latent geometry for multimodal contrastive learning [78], and pretraining time series
models across time and frequency domains [1].

Appendix B Further theoretical discussions

B.1 Differentiable attention masking

As is described in Section 4.1, we use differentiable attention masking [76], which is defined as such:

αm = (softmax(
QKT

√
dk

)⊙MX )V, (6)

where Q,K,V represent query, key and values operators, dk is used as a normalization factor, and
MX is a mask with self-attention values. This procedure is fully differentiable, and given that MX is
binarized via the STE, it sets all attention values to zero that are to be ignored based on output from
HE .

B.2 Further discussion on the utility of model behavior consistency

The model behavior consistency (MBC) framework in TIMEX is a method to train an interpretable
surrogate model GE . In Section 4.3, we discuss the conceptual advances of this approach. Here, we
will outline another advantage of the approach—preserving classification performance—and a brief
discussion on the broader uses of MBC in other domains and applications.

Training an in-hoc model is often challenging, as the inherent interpretability mechanism can hinder
the performance and expressiveness of the method; this is an advantage of post-hoc or surrogate
methods. MBC allows one to preserve the performance of the underlying predictor. TIMEX, a
surrogate method, allows one to keep the predictions from a pre-trained time series encoder and
develop explanations on top of it, which is practical for real-world use when a drop in classification
performance is highly undesirable.

MBC is not limited to time series classification tasks. We demonstrate the utility of MBC for time
series due to the particularly challenging nature of the data modality and the lack of available time
series explainers. However, MBC gives a general framework for learning interpretable surrogate
models through learning the HE and GE modules. MBC also has the potential to be applied to
tasks outside of classification; since MBC is defined on the embedding space, any model with such
an embedding space could be matched through a surrogate model as in TIMEX. This opens the
possibility to learn on general pre-trained models or even more complex tasks such as forecasting.
Finally, we see MBC as having potential beyond explainability as well; one could imagine MBC
being a way to distill knowledge into smaller models [S9, S10, S11]. We leave these discussions and
experiments for future work.
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B.3 Explanation landmark selection strategy

We proceed to describe how landmarks are selected for final interpretation. As described in Section
4.4, landmarks are initialized with the embeddings given by G for a random number of training
samples. Practically, we stratify this selection across classes in the training set. Landmarks are
then updated during the learning procedure. After learning landmarks, not every landmark will be
helpful as an explanation; thus, we perform a filtration procedure. Intuitively, this filtration consists
of detecting landmarks for which the landmark is the nearest landmark neighbor for many samples.
This procedure is described in Algorithm 1.

Algorithm 1: Landmark filtration

Input: Landmark matrix L ∈ RnL×dz ; training explanation embeddings {zE1 , ..., zEN} for
zEi ∈ Rdz ; threshold number of neighbors nϵ ∈ N
Nl ← {}
for i← 1 to N do

Compute similarity to all landmarks Sl
i = sim(zEi ,L)

jmax ← argmaxj S
l
i[j] (Gets nearest landmark for sample explanation i)

Append jmax to Nl

end
Fl ← Frequency of occurrence of each unique element in Nl

Lfilter ← every landmark in L s.t. Fl ≥ nϵ

Return Lfilter

Appendix C Additional experiments and experimental details

C.1 Description of datasets

We conduct experiments using both synthetic and real-world datasets. This section describes each
synthetic and real-world dataset, including how ground-truth explanations are generated when
applicable.

C.1.1 Synthetic datasets

We employ synthetic datasets with known ground-truth explanations to study the capability to
identify the underlying predictive signal. We follow standard practices for designing synthetic
datasets, including tasks that are predictive and not susceptible to shortcut learning [S12] induced
by logical shortcuts. These principles are defined in [88] concerning graphs, but we extend these to
synthetic datasets for time series. Each time series is initialized with a non-autoregressive moving
average (NARMA) noise base, and then the described patterns are inserted. We will briefly describe
the construction of each time series dataset in this section, and the codebase contains full details
at https://anonymous.4open.science/r/TimeX-C1AD. We designed four synthetic datasets to test
different time series dynamics:
FreqShapes. Predictive signal is determined by the frequency of occurrence of an anomaly signal.
To construct the dataset, take two upward and downward spike shapes and two frequencies, 10 and 17
time steps. There are four classes, each with a different combination of the attributes: class 0 has
a downward spike occurring every 10 time steps, class 1 has an upward spike occurring every 10
time steps, class 2 has a downward spike occurring every 17 time steps, and class 3 has an upward
spike occurring every 17 time steps. Ground-truth explanations are the locations of the upward and
downward spikes.
SeqComb-UV. Predictive signal is defined by the presence of two shapes of subsequences: increasing
(I) and decreasing (D) trends. First, two subsequence regions are chosen within the time series so
neither subsequence overlaps; each subsequence is 10-20 time steps long. Then, a pattern is inserted
based on the class identity; the increasing or decreasing trend is created with a sinusoidal noise with
a randomly-chosen wavelength. Class 0 is null, following a strategy in [88] that recommends using
null classes for simple logical identification tasks in synthetic datasets. Class 1 is I, I; class 2 is D,
D; and class 3 is I, D. Thus, the model is tasked with identifying both subsequences to classify each
sample. Ground-truth explanations are the I and/or D sequences determining class labels.
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SeqComb-MV. This dataset is a multivariate version of SeqComb-UV. The construction and class
structure is equivalent, but the I and D subsequences are distributed across different sensors in
the input. Upon constructing the samples, the subsequences are chosen to be on random sensors
throughout the input. Ground-truth explanations are given as the predictive subsequences on their
respective sensors, i.e., the explainer is required to identify the time points at which the causal signal
occurs and the sensors upon which they occur.
LowVar. Predictive signal is defined by regions of low variance over time that occur in a multivariate
time series sample. Similar to SeqComb datasets, we choose a random subsequence in the input
and, in that subsequence, replace the NARMA background sequence with Gaussian noise at a low
variance. The subsequence is further discriminated by the mean of the Gaussian noise and the sensor
on which the low variance sequence occurs. For class 0, the subsequence is at mean -1.5 on sensor 0;
for class 1, the subsequence is at mean 1.5 on sensor 0; for class 2, the subsequence is at mean -1.5
on sensor 1; for class 3, the subsequence is at mean 1.5 on sensor 1. This task is distinctly different
from other synthetic datasets, requiring recognition of a subsequence that is not anomalous from
the rest of the sequence. This presents a more challenging explanation task; a simple change-point
detection algorithm could not determine the explanation for this dataset.

We create 5,000 training samples, 1,000 testing samples, and 100 validation samples for each dataset.
A summary of the dimensions of each dataset can be found in Table 4.

Table 4: Synthetic Dataset Description
Dataset # of Samples Length Dimension Classes

FreqShapes 6,100 50 1 4
SeqComb-UV 6,100 200 1 4
SeqComb-MV 6,100 200 4 4
LowVarDetect 6,100 200 2 4

C.1.2 Real-world datasets

We employ four datasets from real-world time series classification tasks: PAM [81] - human activity
recognition; ECG [80] - ECG arrhythmia detection; Epilepsy [82] - EEG seizure detection; and
Boiler [83] - automatic fault detection.
PAM [81]. It measures the daily living activities of 9 subjects with three inertial measurement units.
We excluded the ninth subject due to the short length of sensor readouts. We segment the continuous
signals into samples with a time window of 600 and the overlapping rate of 50%. PAM initially
has 18 activities of daily life. We exclude the ones associated with fewer than 500 samples, leaving
us with eight activities. After modification, the PAM dataset contains 5,333 segments (samples) of
sensory signals. Each sample is measured by 17 sensors and contains 600 continuous observations
with a sampling frequency of 100 Hz. PAM is labeled into eight classes where each class represents
an activity of daily living. PAM does not include static attributes and the samples are approximately
balanced across all eight classes.
MIT-BIH (ECG) [80]. The MIT-BIH dataset has ECG recordings from 47 subjects recorded
at the sampling rate of 360Hz. The raw dataset was then window-sliced into 92511 samples of
360 timestamps each. Two cardiologists have labeled each beat independently. Of the available
annotations, we choose to use three for classification: normal reading (N), left bundle branch block
beat (L), and right bundle branch block beat (R). We choose these because L and R diagnoses are
known to rely on the QRS interval [S13, S14], which will then become our ground-truth explanation
(see Section C.4). The Arrhythmia classification problem involves classifying each fragment of ECG
recordings into different beat categories.
Epilepsy [82]. The dataset contains single-channel EEG measurements from 500 subjects. For
every subject, the brain activity was recorded for 23.6 seconds. The dataset was then divided and
shuffled (to mitigate sample-subject association) into 11,500 samples of 1 second each, sampled at
178 Hz. The raw dataset features five classification labels corresponding to different states of subjects
or measurement locations — eyes open, eyes closed, EEG measured in the healthy brain region,
EEG measured in the tumor region, and whether the subject has a seizure episode. To emphasize
the distinction between positive and negative samples, we merge the first four classes into one, and
each time series sample has a binary label indicating whether an individual is experiencing a seizure.
There are 11,500 EEG samples in total.
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Boiler [83]. This dataset consists of simulations of hot water heating boilers that undergo different
kinds of mechanical faults. Various mechanical sensors are recorded over time to derive a time series
dataset. The learning task is to detect the mechanical fault of the blowdown valve of each boiler. The
dataset is particularly challenging because it includes a large dimension-to-length ratio, unlike the
other datasets which contain many more time steps than sensors (Table 5).

Table 5: Real-World Dataset Description
Dataset # of Samples Length Dimension Classes Task

PAM 5,333 600 17 8 Action recognition
MIT-BIH 92,511 360 1 or 2 5 ECG classification
Epilepsy 11,500 178 1 2 EEG classification

Boiler 160,719 36 20 2 Mechanical fault detection

C.2 Descriptions of baseline methods

We now describe each baseline method in further detail.
IG [31]. Integrated gradients is a classical attribution method that utilizes the gradients of the
model to form an explanation. The method compares the gradients to a baseline value and performs
Riemannian integration to derive the explanation. Integrated gradients is a popular data type agnostic
interpretability method [S15], but it has no inductive biases specific for time series. We use the
Captum [S16] implementation of this method, including default hyperparameters such as the baseline
value.
Dynamask [57]. This explainer is built specifically for time series and uses a perturbation-based
procedure to generate explanations. The method performs iterative occlusion of various input portions,
learning a mask that deforms the input time series towards a carefully-determined baseline value.
This method is different from TIMEX in a few key ways. First, it performs continuous masking;
TIMEX performs discrete masking through STEs. Second, it measures perturbation impact on the
original model F (G(·)); TIMEX trains a surrogate model GE to learn the explanations and measure
the impact of masking the input. Third, Dynamask learns the explanations iteratively for each sample;
TIMEX trains the surrogate which can then output explanations in one forward pass of HE .
WinIT [85]. This explainer is a feature removal explainer, similar to Dynamask. WinIT measures the
impact of removing features from a time series on the final prediction value. It removes the impact
of certain time intervals, learning feature dependencies across time steps. WinIT uses a generative
model to perform in-distribution replacement of masked-out features. WinIT improves on a previous
time series explainer, FIT [62], which is a popular baseline in time series explainability literature but
is excluded in our work because WinIT is more recent and improves on FIT both conceptually and
empirically.
CoRTX [86]. Contrastive real-time explainer (CoRTX) is an explainer method that utilizes contrastive
learning to approximate SHAP [3] values. This method is developed for computer vision, but we
implement a custom version that works with time series encoders and explanation generators. We
include this method because it uses self-supervised learning to learn explanations. TIMEX also uses
a self-supervised objective to learn explanations, but our method differs from CoRTX in several
ways. First, CoRTX performs augmentation-based contrastive learning while we use MBC, which
avoids the definition of negatives or the careful choice of augmentations specific to the data modality.
Second, CoRTX fundamentally attempts to approximate SHAP values via a small number of SHAP
explanations. In contrast, TIMEX includes a masking system that can produce masks without having
to fine-tune a model on a set of explanations that are derived from an external method. CorRTX has
close parallels to ours in using self-supervised learning but is fundamentally different from TIMEX.
SGT + Grad [17]. Saliency-guided training (SGT), an in-hoc explainer, is based on a modification
to the training procedure. During training, features with low gradients are masked out to "guide" the
model to focus on regions that are more important for the prediction. The method is not an explainer
alone but requires using another post-hoc explainer to derive explanations. In our experiments, we
consider saliency explanations, which are recommended by the SGT authors. The authors found that
this method can improve performance on time series data. For this reason, we include it as one of our
baselines to demonstrate the effectiveness of TIMEX against modern in-hoc explainers.
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Parameter FreqShape SeqComb-UV SeqComb-MV LowVarDetect ECG

Learning rate 0.001 0.001 0.001 0.003 0.0005
Batch size 64 64 64 64 16

Weight decay 0.001 0.001 0.001 0.0001 0.0001
Scheduler? Yes Yes No No No

Epochs 50 50 100 100 5

r 0.5 0.5 0.5 0.5 0.5
Distance norm. No No No Yes No

λLC 1.0 1.0 1.0 1.0 1.0
λE 2.0 2.0 2.0 2.0 2.0
λcon 2.0 2.0 2.0 2.0 2.0
τ 1.0 1.0 1.0 1.0 1.0
nL 50 50 50 50 50

Table 6: Training parameters for TIMEX across all ground-truth attribution experiments.

Parameter Epilepsy PAM Boiler

Learning rate 0.0001 0.002 0.0001
Batch size 32 32 32

Weight decay 0.001 0.001 0.001
Scheduler? Yes No Yes

Epochs 50 100 50

r 0.5 0.1 0.5
Distance norm. No Yes No

λLC 1.0 1.0 1.0
λE 2.0 2.0 2.0
λcon 2.0 0.0 2.0
τ 1.0 1.0 1.0
nL 50 50 50

Table 7: Training parameters for TIMEX across all real-world datasets used for the occlusion
experiments.

C.3 Hyperparameter selection

We list hyperparameters for each experiment performed in this work. For the ground-truth attribution
experiments (Section 6, results R1), the hyperparameters are listed in Table 6. The hyperparameters
used for the occlusion experiment (Section 6, results R2) with real-world datasets is in Table 7. We
also list the architecture hyperparameters for the predictors trained on each dataset in Tables 8-9.

A few abbreviations are used for hyperparameters that are not mentioned in the main text. "Weight
decay" refers to an L1 regularization on the model weights; the value for weight decay is equivalent
to the weight on that term in the loss function compared to the rest of the loss terms (Section 4.4).
"Scheduler?" refers to using a learning rate scheduler that decreases the learning rate by a factor of
10 if a plateau occurs. We use a scheduler that delays decreasing learning rates until after 20 epochs;
not every experiment utilizes the scheduler as it is based on which choice yields lower validation loss
upon convergence. "Distance norm." refers to a normalization of the distances in LMBC; the loss is
divided by the variance of the distances on the Z embedding space. τ is the temperature parameter
used for the Gumbel-Softmax reparameterization [72], Section 4.1. dh refers to the dimensionality
of hidden layers in the transformer predictor. Finally, "Norm. embedding" refers to an architecture
choice that normalizes Z when training the predictor; this is used to prevent a poor latent space when
a collapse is observed via poor latent space geometry.

A few other notes on implementation and design of TIMEX: The architecture of HE uses the same
size of GE and encoder for HE as for the predictor on each task. The number of transformer decoder
layers is fixed at 2. Please reference the codebase for more details on these hyperparameters and
implementations https://anonymous.4open.science/r/TimeX-C1AD.

C.4 Evaluation details

Following [57], we use AUP and AUR to evaluate the goodness of identification of salient attributes
as a binary classification task, which is defined in C.1:
Definition C.1 (AUP,AUR [57]). Let Q be a matrix in {0, 1}T×dX whose elements indicate the true
saliency of the inputs contained in x ∈ RT×dX . By definition, Qt,i = 1 if the feature xt,i is salient
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Parameter FreqShape SeqComb-UV SeqComb-MV LowVarDetect ECG

Num. layers 1 2 2 1 1
dh 16 64 128 32 64

Dropout 0.1 0.25 0.25 0.25 0.1
Norm. embedding No No No Yes Yes

Learning rate 0.001 0.001 5e-4 0.001 2e-3
Weight decay 0.1 0.01 0.001 0.01 0.001

Epochs 100 200 1000 120 500

Table 8: Training parameters for transformer predictors across all ground-truth attribution experiment
datasets.

Param. Epilepsy PAM Boiler

Num. layers 1 1 1
dh 16 72 32

Dropout 0.1 0.25 0.25
Norm. embedding No No Yes

Learning rate 0.0001 0.001 0.001
Weight decay 0.001 0.01 0.001

Epochs 300 100 500

Table 9: Training parameters for TIMEX across all real-world datasets used for the occlusion
experiments.

and 0 otherwise. Let M be a mask in {0, 1}T×dX obtained with a saliency method. Let τ ∈ (0, 1) be
the detection threshold for mt,i to indicate that the feature xt,i is salient. This allows to convert the
mask into an estimator Q̂t,i(τ) via:

Q̂t,i(τ) =

{
1 if mt,i ≥ τ
0 else.

By considering the sets of truly salient indexes and the set of indexes selected by the saliency method:

A = {(t, i) ∈ [1 : T ]× [1 : dX ] | qt,i = 1}
Â(τ) = {(t, i) ∈ [1 : T ]× [1 : dX ] | q̂t,i(τ) = 1} .

the precision and recall curves that map each threshold to a precision and recall score:

P : (0, 1) −→ [0, 1] :τ 7−→ |A ∩ Â(τ)|
|Â(τ)|

R : (0, 1) −→ [0, 1] :τ 7−→ |A ∩ Â(τ)|
|A|

.

The AUP and AUR scores are the area under these curves:

AUP =

∫ 1

0

P(τ)dτ

AUR =

∫ 1

0

R(τ)dτ.

Groud-truth explanations for ECG datasets. We extract ground-truth explanations via a QRS
detection strategy following [84] because an initial set of beat labels was produced by a simple
slope-sensitive QRS detector, which were then given to two cardiologists, who worked on them
independently. The cardiologists added additional beat labels where the detector missed beats, deleted
false detections as necessary, and changed the labels for all abnormal beats. We employ Neurokit 1 to
extract QRS complexes and also take care to ensure that the QRS is the proper explanation for each
class. We consider two types of arrhythmias: left bundle branch block beat and right bundle branch
block beat, to categorize our "abnormal" class. We perform the ground-truth evaluation on only the

1https://github.com/neuropsychology/NeuroKit
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No STE STE
Method AUPRC AUP AUR AUPRC AUP AUR

FreqShapes 0.6695±0.0038 0.6398±0.0038 0.5454±0.0026 0.8324±0.0034 0.7219±0.0031 0.6381±0.0022
SeqComb-MV 0.5694±0.0023 0.8723±0.0006 0.3229±0.0017 0.6878±0.0021 0.8326±0.0008 0.3872±0.0015
ECG 0.4014±0.0019 0.5570±0.0032 0.1564±0.0007 0.4721±0.0018 0.5663±0.0025 0.4457±0.0018

Table 10: Ablation 1: Ablation using the STE vs. no STE. "No STE" is equivalent to continuous
masking, as discussed in Section 4.2.

abnormal class, as the normal class signifies negative information, which may be harder to pinpoint
based on model logic.
Statistical analysis. We evaluate each experiment on a 5-fold cross-validation of each dataset. We
then report average performance and standard error across all folds of evaluation for each experiment,
which results in the error bars seen in all tables throughout this work.

C.5 Visualization of explanations

Figure 5 shows an example of TIMEX explainer versus IG and Dynamask. Shown is the SeqComb-
UV dataset, which has increasing and decreasing subsequences that determine the class label. Each
explainer identifies the regions driving the prediction. IG identifies very sparse portions of the
predictive region, choosing only one point out of the sequences for the explanation; this is not
reasonable when scaling to large and noisier datasets where the signal might not be as clear. Dynamask
seems to miss some important subsequences, identifying one or two subsequences. In contrast, TIMEX
identifies a larger portion of the important subsequences due to the connection loss in Equation 2.
This property becomes crucial when scaling to time series datasets with more noise as it becomes
more difficult to intuitively deduce the causal signal through visual inspection.

C.6 Further ablation experiments

We present a more in-depth study of ablations on TIMEX with respect to three datasets: FreqShapes
(univariate), SeqComb-MV (multivariate), and ECG (real-world). This is an extension to the ablations
on the ECG dataset in Section 6, R1 in Table 3.
Ablation 1: No STE. We now conduct an experiment examining the effectiveness of using the STE
for training TIMEX. Table 10 shows the results of this ablation experiment. Using the STE provides
over a 17% increase in AUPRC for attribution identification for every dataset. Furthermore, AUR is
better when using an STE for every dataset, but the AUP is better for SeqComb-MV without the STE
than with the STE. Using the STE also shows benefits in both the univariate (FreqShapes, ECG) and
multivariate (SeqComb-MV) settings. In conclusion, the STE provides a noticeable benefit over a
continuous masking approach, giving empirical evidence for the claims made in Section 4.2.
Ablation 2: SimCLR vs. MBC. We now test a classical SimCLR [S5] contrastive learning loss
against our proposed model behavior consistency (MBC). The SimCLR objective is designed to
decrease the distance between explanation embeddings and embeddings in the reference model’s
latent space. We do not perform data augmentations as in the original SimCLR work. The SimCLR
loss that we use is given as:

LSimCLR(Z,Z
E) =

1

N

∑
zi∈Z,zE

i ∈ZE

− log
exp(D(zi, z

E
i ))∑

j ̸=i exp(D(zj , zEi ))
(7)

For each SimCLR trial, we fixed the number of sampled negatives at 32 and kept all other parameters
equal. In addition, an early stopping strategy was performed where the stopping value was based
on cosine similarity between explanation embeddings and reference sample embeddings (higher
similarity is better).

SimCLR loss provides a valuable objective for training TIMEX relative to baseline explainers, but
MBC optimization produces more robust explanations. SimCLR delivers a slightly better AUPRC for
ECG, but its AUPRC values are below that of MBC for FreqShapes and SeqComb-MV. SimCLR
loss yields explanations with consistently lower AUP; AUP is closest for SeqComb-MV with only
a 3.4% drop from MBC, but it is at a 17.0% decline for FreqShapes and a 13.6% drop for ECG. It
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Figure 5: Visualization of explanations on SeqComb-UV dataset. Each column corresponds to a
unique sample. All are of Class 3, which consists of one increasing subsequence and one decreasing
subsequence. The methods that generate each figure are shown for each of the rows while ground
truth explanations are provided in the top row.

is important to note that in addition to increased performance, MBC loss is more computationally
efficient than SimCLR loss, avoiding inference on negative samples.
Ablation 3: Effect of MBC and LC losses. We now examine the effectiveness of using both model
behavior consistency (Eq. 3) (MBC) and label consistency (Eq. 4) (LC) losses. Table 12 shows
that using LC and MBC in combination is always better than using either one alone. In isolation,
LC performs better than MBC, which is expected given its (obviously) higher correlation with the
classification predictions than MBC, which relies on an earlier embedding space. Using both losses
results in a powerful explainer that achieves over 27.5% higher AUPRC than MBC or LC alone.
MBC and LC work together to capture rich information about the model’s behavior, allowing TIMEX
to be a state-of-the-art explainer.
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SimCLR MBC
Method AUPRC AUP AUR AUPRC AUP AUR

FreqShapes 0.7014±0.0046 0.5991±0.5915 0.5915±0.0027 0.8324±0.0034 0.7219±0.0031 0.6381±0.0022
SeqComb-MV 0.6645±0.0019 0.8148±0.0009 0.3777±0.0017 0.6878±0.0021 0.8326±0.0008 0.3872±0.0015
ECG 0.4767±0.0021 0.4895±0.0024 0.4779±0.0013 0.4721±0.0018 0.5663±0.0025 0.4457±0.0018

Table 11: Ablation 2: Ablation considering SimCLR objective for training TIMEX versus an MBC
objective as outlined in the main text.

Dataset Ablation AUPRC AUP AUR

MBC only 0.2316±0.0020 0.1533±0.0015 0.4763±0.0022
FreqShapes LC only 0.2629±0.0022 0.1850±0.0016 0.5893±0.0018

MBC + LC 0.8324±0.0034 0.7219±0.0031 0.6381±0.0022

MBC only 0.0761±0.0008 0.0576±0.0006 0.4996±0.0019
SeqComb-MV LC only 0.0788±0.0009 0.0570±0.0006 0.5294±0.0034

MBC + LC 0.6878±0.0021 0.8326±0.0008 0.3872±0.0015

MBC only 0.1615±0.0006 0.1348±0.0006 0.5504±0.0011
ECG LC only 0.3704±0.0018 0.3296±0.0019 0.5084±0.0008

MBC + LC 0.4721±0.0018 0.5663±0.0025 0.4457±0.0018

Table 12: Ablation 3: Effects of model behavior consistency (MBC) and label consistency (LC)
losses on explanation performance.

C.7 Implementation and computing resources

Implementation. We implemented all methods in this study using Python 3.8+ and PyTorch 2.0.
In our experiments, we employed the Vanilla Transformer [87] as the classification model for all
methods. To ensure strong underlying predictors for explainability evaluation, as suggested by Faber
et al. [88], we verified that the classification models achieved satisfactory performance on the testing
set. Complete classification results are in Table 13. We followed the hyperparameters recommended
by the respective authors for all baseline methods.
Computational resources. For computational resources, we use a GPU cluster with various GPUs,
ranging from 32GB Tesla V100s GPU to 48GB RTX8000 GPU. TIMEX, and all models were only
trained on a single GPU at any given time. The average experiment runtime in this work was around
5 minutes per fold, with ECG taking the longest at approximately 13 minutes per fold when training
TIMEX to convergence.

C.8 Flexible use of TIMEX with different time series architectures

We now study the ability of TIMEX to work with different underlying time series architectures. This
means that of the original architecture, G and GE are now an alternative architecture, while HE

remains as described in Section 4.1. Since experiments in the main text are based on transformer
architectures, we now use a convolutional neural network (CNN) and long-short term memory
(LSTM) network as the underlying predictors with the following hyperparameters:

• LSTM: 3 layer bidirectional LSTM + MLP on mean of last hidden states

Dataset F1 AUPRC AUROC

FreqShapes 0.9716±0.0034 0.9940±0.0008 0.9980±0.0003
SeqComb-UV 0.9415±0.0052 0.9798±0.0028 0.9921±0.0011
SeqComb-MV 0.9765±0.0024 0.9971±0.0005 0.9990±0.0001
LowVar 0.9748±0.0056 0.9967±0.0013 0.9988±0.0005

Boiler 0.8345±0.0089 0.8344±0.0071 0.8865±0.0159
ECG 0.9154±0.0134 0.9341±0.0169 0.9587±0.0111
Epilepsy 0.9201±0.0079 0.9246±0.0130 0.9391±0.0157
PAM 0.8845±0.0051 0.9251±0.0029 0.9786±0.0009

Table 13: Classification (i.e., predictive) performance achieved by transformer time series models
on datasets used in this study. These models are considered as time series predictors throughout
experiments in this study.
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FreqShapes SeqComb-MV
Method AUPRC AUP AUR AUPRC AUP AUR

IG 0.9282±0.0016 0.7775±0.0010 0.6926±0.0017 0.2369±0.0020 0.5150±0.0048 0.3211±0.0032
Dynamask 0.2290±0.0012 0.3422±0.0037 0.5170±0.0013 0.2836±0.0021 0.6369±0.0047 0.1816±0.0015
WinIT 0.4171±0.0016 0.5106±0.0026 0.3909±0.0017 0.3515±0.0014 0.6547±0.0026 0.3423±0.0021

Ours 0.9974±0.0002 0.7964±0.0009 0.8313±0.0011 0.1298±0.0017 0.1307±0.0022 0.4751±0.0015

Table 14: Explainer results with LSTM predictor on FreqShapes and SeqComb-MV synthetic datasets.

ECG
Method AUPRC AUP AUR

IG 0.5037±0.0018 0.6129±0.0026 0.4026±0.0015
Dynamask 0.3730±0.0012 0.6299±0.0030 0.1102±0.0007
WinIT 0.3628±0.0013 0.3805±0.0022 0.4055±0.0009

Ours 0.6057±0.0018 0.6416±0.0024 0.4436±0.0017

Table 15: Explainer results with LSTM predictor on ECG dataset.

• CNN: 3 layer CNN + MLP on meanpool

Tables 16 17 show the results of TIMEX against strong baselines with a CNN predictor. TIMEX
retains the state-of-the-art prediction observed for the transformer-based architecture, achieving
the best AUPRC on SeqComb-MV and ECG datasets. However, the performance for FreqShapes
saturates at very high values for both TIMEX and IG, making the comparison more difficult for
AUPRC. Tables 14,15 show the results of TIMEX against strong baselines with an LSTM predictor.
TIMEX performs very well for both FreqShapes and ECG datasets, achieving the highest AUPRC,
AUP, and AUR for both datasets. For SeqComb-MV, TIMEX did not converge. However, no explainer
performed well for this task, achieving lower results than for the transformer and CNN predictors.

FreqShapes SeqComb-MV
Method AUPRC AUP AUR AUPRC AUP AUR

IG 0.9955±0.0005 0.8754±0.0008 0.7240±0.0015 0.5979±0.0027 0.8858±0.0014 0.2294±0.0013
Dynamask 0.2574±0.0008 0.4432±0.0032 0.5257±0.0015 0.4550±0.0016 0.7308±0.0025 0.3135±0.0019
WinIT 0.5321±0.0018 0.6020±0.0025 0.3966±0.0017 0.5334±0.0011 0.8324±0.0020 0.2259±0.0020

Ours 0.9941±0.0002 0.6915±0.0010 0.8522±0.0009 0.7016±0.0019 0.7670±0.0012 0.4689±0.0016

Table 16: Explainer results with CNN predictor on FreqShapes and SeqComb-MV synthetic datasets.

ECG
Method AUPRC AUP AUR

IG 0.4949±0.0010 0.5374±0.0012 0.5306±0.0010
Dynamask 0.4598±0.0010 0.7216±0.0027 0.1314±0.0008
WinIT 0.3963±0.0011 0.3292±0.0020 0.3518±0.0012

Ours 0.7844±0.0014 0.8706±0.0012 0.3972±0.0010

Table 17: Explainer results with CNN predictor on ECG dataset.
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